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a b s t r a c t

This paper addresses the problem of disturbance rejection control for Markovian jump linear systems
with matched and mismatched disturbances. Based on the state and disturbance estimates obtained by
the proposed discontinuous or continuous extended sliding mode observers, the composite controllers
are designed to actively reject the disturbance. Moreover, the problem of stochastic stability analysis
for the estimation error systems and the closed-loop systems are also performed respectively. Finally,
a numerical example is provided to illustrate the efficiency and advantage of the proposed methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that many dynamical systems having variable
structures subject to random abrupt changes can be modeled
by hybrid systems with both time-evolving and event-driven
mechanisms. The special class of hybrid systems are the so-called
Markovian jump linear systems (MJLSs). The MJLSs are linear
systems with randomly jumping parameters, where the jumps
are governed by a Markov process chain. It is worth mentioning
that the well-known networked control systems (NCSs) can be
modeled as MJLSs if the packet dropouts and channel delays are
modeled byMarkov chains. Over the past decades,MJLSs have been
widely investigated and research topics on MJLSs include stability
analysis, stabilization and filtering problems, see for example
Basin, Gonzalez, Acosta, and Fridman (2005), Basin, Ferreira, and
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Fridman (2007), Basin and Rodriguez-Ramirez (2011, 2014), de
Farias, Geromel, do Val, and Costa (2000), Dong and Yang (2008),
de Souza, Trofino, and Barbosa (2006), Huang, Long, and Li (2015),
Kang, Zhang, and Ge (2008), Karana, Shi, and Kaya (2006), Shi,
Boukas, and Agarwal (1999), Shi and Yu (2009), Zhang and Boukas
(2009), Zhang, Boukas, and Lam (2008), and the references therein.
For more details, please refer to the monograph (Boukas, 2008;
Costa, Fragoso, & Marques, 2005).

In practical control systems, due to the friction and load
variation, environment noises, unmodeled dynamics, or errors
caused by sensors and actuators, various types of disturbances or
uncertainties are unavoidable and can severely degrade the control
performance. Therefore, disturbance attenuation and rejection
becomes a crucial problem to achieve stability and pursue better
control performances. During thepast decades, several disturbance
attenuation and rejection approaches have been established for
MJLSs, such as H∞ control (Boukas & Liu, 2001; Kang et al., 2008),
sliding mode control (Basin & Rodriguez-Ramirez, 2014; Shi, Xia,
Liu, & Rees, 2006; Wang & Fei, 2015; Wu & Shi, 2010; Wu & Ho,
2010) and disturbance observer based control (DOBC) (Yao & Guo,
2013, 2014). TheH∞ control technique possessing advantages over
classical control techniques is an effective disturbance attenuation
method and has already been successfully applied in practice.
However, the robustness against disturbance achieved by the
H∞ control approach is guaranteed at the price of degraded
nominal performance, and the disturbance is assumed to belong
to L2[0, ∞), i.e., the disturbance has finite energy. While the
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sliding mode control technique has the robustness with respect
to the so-called matched disturbances or plant uncertainties.
However, when the system is switching stochastically among
different subsystems, the trajectories of the system cannot stay on
each sliding surface of subsystems forever, therefore, it is difficult
to determine whether the closed-loop system is stochastically
stable (Xia, Fu, Shi, Wu, & Zhang, 2009). Different from the
aforementioned two control approaches, the DOBC can provide an
active and effectiveway to handle disturbances and achieve a good
disturbance-rejection performancewithout scarifying the nominal
performance (Li, Yang, Chen, & Chen, 2014). More recently, the
composite DOBC and H∞ control technique has been proposed for
MJLSs with nonlinearity and multiple disturbances in Yao and Guo
(2013). However, the disturbance is assumed to be generated by
an exogenous system, which may limit the practical applications
of the proposed control approaches since it may be a challenging
problem to identify the unknown disturbances.

In this paper, we focus on the disturbance rejection control
problem for MJLSs with matched and mismatched disturbances.
Motivated by the DOBC approaches (Yao & Guo, 2013, 2014),
both the discontinuous and continuous extended sliding mode
observers are developed to estimate the state and disturbance
simultaneously, and the stochastic stability analysis problem of
the estimation error systems are also performed respectively.With
the state and disturbance estimates, the composite controllers are
designed for systems with matched and mismatched disturbance,
respectively. It can be shown that, by introducing the disturbance
estimate in the controller, the disturbance can be actively
rejected effectively. There are three main features of the proposed
approaches being worth mentioning,

• Different from the disturbance attenuation approaches, such
as H∞ control and sliding mode control, the proposed control
approaches are essentially the active disturbance rejection
control approaches.

• Compared with the existing DOBC approaches (Yao & Guo,
2013, 2014), the disturbances considered in this paper are
not generated from an exogenous system, but assumed to be
unknown and bounded.

• The composite controllers are designed based on the state and
disturbance estimates, which are more effective than the state-
based controllers (Shi et al., 2006; Xia et al., 2009; Yao &
Guo, 2013, 2014) because of the system states are not always
available due to the limit of physical condition or expense to
measure.

Finally, a numerical example is included to demonstrate the
effectiveness of the theoretical results obtained.

2. Problem formulation

Fix a probability space (Ω, F , P ), whereΩ is the sample space,
F is the σ -algebra of subsets of the sample space and P is the
probability measure on F . With the probability space (Ω, F , P ),
we consider the following Markovian jump linear systems,

ẋ(t) = A(rt)x(t) + B(rt)u(t) + Bw(rt)w(t)
y(t) = C(rt)x(t) + Dw(rt)w(t) (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control input
and w(t) ∈ Rp is the external disturbance. The jumping process
(rt , t ≥ 0) taking values in a finite set S , {1, 2, . . . ,N}, governs
the jumping among the different system modes, and (rt , t ≥ 0)
is a continuous-time, discrete-state homogeneous Markov process
and has the following mode transition probabilities:

Pr(rt+δ = j|rt = i) =


λijδ + o(δ) if j ≠ i
1 + λijh + o(δ) if j = i

where δ > 0, limδ→0
o(δ)
δ

= 0, andλij ≥ 0 for i ≠ j, i, j ∈ S denotes
the transition probability from mode i at time t to mode j at time
t + δ, and λii = −

N
j=1,j≠i λij for all i ∈ S, and the Markov process

transition rates matrix Λ is defined by:

Λ =


λ11 λ12 · · · λ1N
λ21 λ22 · · · λ2N
...

...
. . .

...
λN1 λN2 · · · λNN

 .

Assumption 1. The external disturbance satisfies the following
that ∥w(t)∥ ≤ ϱ and ∥ẇ(t)∥ ≤ ρ.

For any function V (t, x, rt), the weak infinitesimal operator
Fx
i [·] of the process {x(t), rt , t ≥ 0} at the point {t, x, i}

Fx
i [V ] =

∂V
∂t

+
∂V
∂x

ẋ(t) +

N
j=1

λijV (x, j).

For each possible value rt = i, i ∈ S, the matrix A(rt) will be
denoted by Ai for the sake of simplicity.

The following definitions about stability are presented.

Definition 1. The equilibrium x(t) = 0 of system (1) is said to be

• (weakly) stable in probability (for t > 0) if, for every ε > 0 and
δ > 0, there exists an r > 0 such that if t > 0 and ∥x0∥ < r ,
then Pr {∥x(t)∥ > ε} < δ.

• asymptotically stable in probability if it is stable in probability
and, for each ε > 0, x0 ∈ Rn and i0 ∈ S there is limt→∞ Pr
{∥x(t)∥ > ε} = 0.

Definition 2. A stochastic process x(t) is said to be bounded in
probability if the random variables ∥x(t)∥ are bounded in proba-
bility uniformly in t , i.e., limR→∞ supt>0 Pr {∥x(t)∥ > R} = 0.

3. Design of extended sliding mode observers

Similar to Yao and Guo (2013), define

x̄(t) =


x(t)
w(t)


, Ā(rt) =


A(rt) Bw(rt)
0 0


,

B̄(rt) =


B(rt)
0


, D̄ =


0
Ip


,

C̄(rt) =

C(rt) Dw(rt)


,

thus, MJLS (1) can be rewritten into the following extended form,

˙̄x(t) = Ā(rt)x̄(t) + B̄(rt)u(t) + D̄ẇ(t)

y(t) = C̄(rt)x̄(t). (2)

3.1. Discontinuous extended SMO

For MJLS (2), consider the following discontinuous mode-
dependent extended SMO,

˙̂x̄(t) = Ā(rt)ˆ̄x(t) + B̄(rt)u(t) + L(rt)ỹ(t) + D̄F(rt)v1(t) (3)

where ỹ(t) = y(t) − C̄(rt)ˆ̄x(t), and

v1(t) =

η
ỹ(t)ỹ(t) if ∥ỹ(t)∥ ≠ 0

0 if ∥ỹ(t)∥ = 0
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