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a  b  s  t  r  a  c  t

Gait  rhythm  disturbances  due  to abnormal  strides  indicate  the  degenerative  mobility  regulation  of  motor
neurons  affected  by  Parkinson’s  disease  (PD).  The  aim of  this  work  is to  compute  the  approximate
entropy  (ApEn),  normalized  symbolic  entropy  (NSE),  and  signal  turns  count  (STC)  parameters  for  the
measurements  of stride  fluctuations  in  PD.  Generalized  linear  regression  analysis  (GLRA)  and  support
vector  machine  (SVM)  techniques  were  employed  to implement  nonlinear  gait  pattern  classifications.
The  classification  performance  was  evaluated  in terms  of  overall  accuracy,  sensitivity,  specificity,  preci-
sion,  Matthews  correlation  coefficient  (MCC),  and  area  under  the  receiver  operating  characteristic  (ROC)
curve. Our  experimental  results  indicated  that  the  ApEn,  NSE,  and  STC  parameters  computed  from  the
stride series  of  PD  patients  were  all significantly  larger  (Wilcoxon  rank-sum  test:  p <  0.01)  than  those
of  healthy  control  subjects.  Based  on the  distinct  features  of ApEn,  NSE,  and STC,  the SVM  provided  an
accuracy  rate  of 84.48%  and  MCC  of  0.7107,  which  are  better  than  those  of the  GLRA  (accuracy:  82.76%,
MCC:  0.6552).  The  SVM  and  GLRA  methods  were  able  to  distinguish  PD  gait  patterns  from  healthy  con-
trol  cases  with  area  of 0.9049  (SVM  sensitivity:  0.7241,  specificity:  0.9655)  and  0.9037  (GLRA  sensitivity:
0.8276,  specificity:  0.8276)  under  the ROC  curve,  respectively,  which  are  better  or  comparable  with  the
classification  results  achieved  by the other  popular  pattern  classification  methods.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Parkinson’s disease (PD) is a hypokinetic neurological disease
due to apoptosis of dopaminergic cells in the substantia nigra [1].
The chronic deterioration of dopaminergic cells in the cerebrum
decreases neural interactions such that neuronal signals are not
properly transmitted from one neuron to another. The effects of
PD may  involve cognitive disorders, such as dementia, depression,
disturbances in rapid eye movement sleep, visual difficulty, and
dysphonia [2]. Degeneration of the central nervous system also
leads to motor dysfunction, with the manifest symptoms in terms of
noticeable tremor at 4–6 Hz, bradykinesia, postural instability, and
rigidity [1]. Freezing of gait and impaired balance increase risks of
falling for PD patients [3]. Lower limb stiffness, slow movement,
small shuffling strides, and other apparent gait disturbances can
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be observed in PD patients with mild and moderate motor impair-
ments [4].

Wearable sensors and portable mobility measurement systems
are useful in ambulatory posture monitoring and gait assessment
for PD patients [5–9]. Rigas et al. [10] and Salarian et al. [11] mea-
sured body movement activities by using a group of accelerometers
to detect and quantify tremor and bradykinesia in PD. Patel et al.
[6] set up a body sensor network with wearable sensors to fuse
accelerometer data to estimate the severity of motor symptoms
and other PD complications. Moore et al. [12] and Bachlin et al. [13]
computed postural and kinematic features associated with freezing
of gait from the acceleration signals recorded by inertial measure-
ment systems. Su et al. [14] measured the asymmetry of frequency
sub-band components of the ground reaction force time series to
detect pathological gait patterns in Parkinson’s disease. Corbier
et al. [15] used autoregressive moving average models with reduced
order using the Huberian approach to characterize the stochastic
process of gait rhythm signals of patients with PD and Huntington’s
disease. Predominant gait features may provide meaningful infor-
mation to assess the pathological condition [16–18] and evaluate
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the effects of anti-PD medicine intervention or physical therapy
[19]. Hausdorff [20] emphasized the importance of fluctuations in
stride process for movement disorder analysis.

In recent years, fractal analysis and statistical methods have
been effectively applied to study the gait variability in neurolog-
ical diseases [21–23]. Xia et al. [24] calculated the Lempel-Ziv
complexity, fuzzy entropy, and Teager-Kaiser energy features to
characterize the different gait patterns of patients with PD, amyo-
trophic lateral sclerosis, and Huntington’s disease. Daliri [25] used
the short-time Fourier transform to analyze the spectrum of gait
signals, and computed the chi-square distances between the his-
tograms of frequency variances for gait pattern classification.
Ertugrul et al. [26] proposed the shifted 1D local binary patterns
to characterize local disturbances in gait signals. Wahid et al. [27]
quantified several spatial-temporal gait features for 23 PD patients
and 26 age-matched healthy controls, and then compared the clas-
sification results of random forest, support vector machine (SVM),
and kernel Fisher discriminant analysis methods. Lee and Lim [28]
computed the wavelet transforms, and used a neural network with
weighted fuzzy membership functions to distinguish pathological
gait patterns in PD. Classification of gait patterns may  assist neurol-
ogists to effectively identify and analyze the abnormal biomarkers
related to movement disorders [29]. The motivation of this work is
to compute the approximate entropy (ApEn), normalized symbolic
entropy (NSE), and signal turns count (STC) features to measure the
intrinsic irregularities as gait disturbance indicators in PD. The pri-
mary hypothesis is to test whether the gait rhythm irregularities
in PD represented by these three features are significantly greater
than those of age-matched healthy subjects. Based on the entropy
and signal variability features, the Parkinsonian gait patterns can
be effectively distinguished by different nonlinear classifiers.

2. Gait data set

The gait data used in the present study were provided by Yogev
et al. [30], and can be accessed via the PhysioNet website [31]. 29
patients with idiopathic PD (20 males and nine females, age mean ±
standard deviation (SD): 71.1 ± 8.1 years, body mass: 73.8 ± 15.7 kg,
height: 169 ± 11 cm)  and 29 age-matched healthy control (CO) sub-
jects (16 males and 13 females, age: 71.9 ± 6.5 years, body mass:
73 ± 12.3 kg, height: 167 ± 8 cm)  were recruited from the Tel-Aviv
Sourasky Medical Center, Israel [30]. The neurological impairment
stages of the PD patients ranged from 2 to 3 on the Hoehn and
Yahr (H&Y) scale [32], which were confirmed by neurological
examinations. The severity of PD was also quantified by the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) [33]. The mean ±
SD of the H&Y scale and UPDRS were 2.34 ± 0.4 and 32.9 ± 12.3
for the PD patients, respectively. The healthy control subjects
were recruited from the local community in Tel-Aviv, Israel. All
of the participants were able to ambulate independently, with-
out a mobility-assistive device, and did not suffer from any other
pathological condition, such as cardiovascular disease, respiratory
disease, musculoskeletal disease, or other neurological disease.
The subjects were requested to provide written informed consent.
The experimental protocol and subject consent documents were
approved by the Human Studies Committee of Tel-Aviv Sourasky
Medical Center [30]. Data analysis methodology documents were
reviewed and approved by the Ethics Committee of Xiamen Uni-
versity.

According to the experimental protocol of Yogev et al. [30],
the subjects were asked to walk at their comfortable pace along
a straight path on level ground for 2 min. The raw gait data were
quantified by a force-sensitive system that contains a pair of
shoes and a portable data acquisition module [34]. Each shoe con-
tained eight ultrathin load sensors which measured vertical forces

underneath the foot, with a sampling rate of 100 Hz and 12 bits
per sample of quantizing resolution. The data acquisition mod-
ule (dimensions: 19 × 14 × 4.5 cm;  weight: 1.5 kg) was  worn on
the waist [34]. The gait cycle time series were processed using
the algorithm proposed by Hausdorff et al. [35], which determines
gait parameters such as stride time, stance time, and swing time.
Although the stride time of both feet were recorded, we  only con-
sidered the right-foot stride time for statistical analysis in the
present study. To eliminate the start-up and ending effects of walk-
ing postures, which were somewhat different from the normal
walking patterns, we excluded the first four strides (start-up from
standing to initial walking) and the last four strides (from normal
walking to ending the last stride) in the raw time series. A median
filter [36,4] was  applied to detect and remove the stride outliers,
the amplitudes of which were 3 SD larger than the median value of
the entire stride time series.

3. Gait rhythm analysis

3.1. Approximate entropy

The ApEn parameter, proposed by Pincus [37], is a statistical
approach that measures the irregularity and subtle fluctuations in
a physiological process [38]. For a stride-time series of N samples,
{s(i)}, the ApEn model is expressed as ApEn(m,  r, N), where the
positive integer m ∈ Z

+ denotes a window length for similarity
comparison and the positive real number r ∈ R+ is the tolerance
parameter for accepting similarity matches [39]. Let us define a
sequence of vectors, {x1(i), x2(i), . . .,  x(N−m+1)(i)}, in which each
vector xm(i) = [s(i), s(i + 1), . . .,  s(i + m − 1)] is composed of m consec-
utive data samples of the time series. The distance d[xm(i), xm(j)]
is defined as the maximum absolute difference between the corre-
sponding elements from the vectors xm(i) and xm(j), respectively
[40], i.e.,

d[xm(i), xm(j)] = max
k=1,2,...,m

|s(i + k − 1) − s(j + k − 1)|.  (1)

For each i, 1 � i � N − m + 1, let Cm
i

(r) quantify the probability of j
satisfying the condition that the distance between xm(i) and the
template xm(j) is smaller than r, i.e.,

Cm
i (r) = number of j such that d[xm(i), xm(j)] < r

N − m + 1
.  (2)

The value of Cm
i

(r) represents the frequency of similarity matches
within a tolerance r between the vector xm(i) of window length m
and a given template xm(j). Define the function �m(r) as the average
of the natural logarithms of Cm

i
(r) [41]:

�m(r) =
∑N−m+1

i=1 ln Cm
i

(r)

N − m + 1
.  (3)

Then, the approximate entropy ApEn(m,  r) is given by [39]

ApEn(m, r) = lim
N→∞

[�m(r) − �m+1(r)]. (4)

For a finite-length time series, the approximate entropy ApEn(m,  r,
N) is expressed as

ApEn(m, r, N) = [�m(r) − �m+1(r)]

=
∑N−m+1

i=1 ln Cm
i

(r)

N − m + 1
−

∑N−m
i=1 ln Cm+1

i
(r)

N − m
. (5)

When N is much larger than m,  that is N � m,  the value of ApEn(m,
r,  N) can be approximately estimated as

ApEn(m, r, N) ≈
∑N−m

i=1 ln
[
Cm

i
(r)/Cm+1

i
(r)

]
N − m

. (6)
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