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a  b  s  t  r  a  c  t

Heart  rate variability  (HRV)  plays  an important  role  in medicine  and  psychology  because  it is  used  to
quantify  imbalances  of  the  autonomic  nervous  system  (ANS).  An  important  manifestations  of  the  ANS
on HRV  is also  directly  related  to respiration  and  it is  called  respiratory  sinus  arrhythmia  (RSA).  This  is
a controlled  phenomenon  that  leads  to a synchronized  coupling  between  respiration  and  instantaneous
heart  rate.  Thus,  the  portion  of HRV  that  is  not  related  to respiration,  and  could  potentially  contain  undis-
covered  diagnostic  value,  is overlapped  and  remains  hidden  in a standard  HRV  analysis.  In such cases,  a
decoupling  procedure  would  deliver  a discriminated  HRV  analysis  and  possible  new  insights  about  the
regulation  of the  cardiovascular  system.  In this  work,  we propose  an algorithm  based  on  Granger’s  causal-
ity to  measure  coupling  between  respiration  and HRV.  In the  case  of  significant  coupling,  we estimate  and
cancel  the  respiration  driven  HRV  component  using  a linear  filtering  approach.  We  tested  the  method
using  synthetic  signals  and  prove  it  to deliver  a reliable  coupling  measurement  in 96.3%  of  the  cases  and
reconstruct  respiration  free  signals  with a  median  correlation  coefficient  of 0.992.  Afterwards,  we applied
our  method  to signals  recorded  during  paced  respiration  and  during  natural  breathing.  We  demonstrated
that  coupling  is dependent  on  respiratory  frequency  and  that  it maximizes  at 0.3  Hz.  Furthermore,  the
HRV parameters  measured  during  paced  respiration  tend  to  level  among  subjects  after  decoupling.  The
intersubject  variability  of  HRV  parameter  is  also  decreased  after  the  separation  process.  During  natural
breathing,  coupling  is  notoriously  lower  to non-existing  and  decoupling  has little  impact  on  HRV.  We
conclude  that  the  method  proposed  here  can  be used  to investigate  the diagnostic  value  of respiration
independent  HRV  parameters.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The continuous change and adaptation of the instantaneous
heart rate to internal and external factors is called heart rate vari-
ability (HRV). The regulation of the heart rate is carried out by
the two complementary branches of the autonomous nervous sys-
tem (ANS), the sympathetic and parasympathetic nervous system
[1]. A healthy heart that is regulated in the proper manner is
characterized by a strong HRV [2]. This principle is used in many
fields of medicine and psychology for diagnostic purposes [3,4].
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Scientific studies dealing with topics such as the quantification of
risk of sudden cardiac death in patients with chronic heart failure or
the assessment of mental workload when performing a given cog-
nitive task, have been approached using the analysis of standard
HRV parameters [5,6].

It is well known that HRV is strongly related to respiration [7,8].
There are two  major reasons for this fact. First, respiration, heart
rate and blood pressure are all part of a greater cardiorespiratory
system that is also regulated by the ANS in the form of a cou-
pled feedback control system [9]. Therefore, internal or external
perturbations in one of the members of the system have a direct
impact on the others. So for example, heart rate tends to increase
as a response to hypoxia or hypercapnia in healthy subjects [10].
Another example is the baroreceptor reflex in which a change in
blood pressure affects heart rate through negative feedback [11].
Second, a phenomenon called respiratory sinus arrhythmia (RSA),
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in which heart rate increases during inspiration and it lowers dur-
ing expiration, leads also to a notorious synchronized coupling
between the breathing pattern and heart rhythm. As a matter of
fact, RSA is the most important manifestation of the ANS directed
to the heart and recorded non-invasively from the heart period [12].
Even though RSA is not fully understood, it is believed to minimize
mechanical work done by the heart while maintaining a healthy
concentration of gases in the blood and to optimize gas exchange
while breathing by matching perfusion to heart rate [13–15]. Since
the impact of RSA can change depending on different factors such as
age, breathing frequency, tidal volume or general health condition
of the subject [16–18], it is hard to quantify its effect on the HRV
parameters. For this reason, other authors have tried to control the
effect of respiration on HRV and have evaluated if this procedure
can increase the diagnostic power of HRV parameters [19,20].

In a study presented in 2011 [21], the authors addressed the
problem of detecting mental stress during a cognitive task using
HRV. For this purpose, a transfer function, that described the car-
diorespiratory coupling, was estimated and the respiration related
fluctuations of the heart rate were subtracted. It was shown that
separating the HRV analysis and removing the respiration driven
part of it, leads to a residual HRV that is more suited for discrimina-
tion between mental stress and resting state. This conclusion has
been ratified in other studies dealing also with stress classification
and applying similar procedures [22,23].

The algorithms used to separate respiration from HRV presented
in literature lack two important aspects. First, they do not quan-
tify the strength of coupling between respiration and HRV. Thus,
in the case that no significant coupling is present, a separation is
still carried out. This has the risk of generating wrongly decoupled
time series. In addition, the strength of the cardiorespiratory cou-
pling could deliver more information about the state of health of
the subject. Second, even though the methods presented in the past
have been validated empirically, no validation on a theoretical basis
has been carried out. Since the golden truth about the respiration
related part of heart rate is not known, it is hard to evaluate the
correctness and performance of the separating method itself.

In order to address these issues, we developed a method to
quantify coupling between respiration and HRV using Granger’s
causality and defined a threshold to detect significant coupling.
The algorithm then continues with the separation of the respira-
tion induced part of the HRV. Special procedures were created for
paced respiration at different frequencies and natural breathing.
The residual HRV unrelated to respiration is achieved using linear
filters such as an optimal notch filter (for paced respiration) and an
ARMAx filter (for natural breathing). Similar methodologies used
for related applications have been presented in the past in [24,21].
For the purpose of testing the method on a theoretical basis, we also
carried out a simulation study using synthetic signals that resem-
bled the ones measured for this work. Finally, after demonstrating
the validity of the developed algorithm, we use it to separate the
influence of respiration on the HRV in a data set recorded during
paced respiration and in another one with natural breathing.

2. Methods

2.1. Data

2.1.1. Synthetic signals
In order to test the algorithms developed in this work at a

theoretical level, we carried out a simulation study using syn-
thetic signals. Respiration, RR time series (which is reciprocal of
the instantaneous heart rate) and their coupling were modeled
to resemble the real measured signals in the time and fre-
quency domain. The block diagram shown in Fig. 2a displays the

complete simulation scheme that includes the generation of real-
istic time series, the way  these signals are coupled, the decoupling
algorithm and the evaluation of the reconstruction. In this work,
we call intrinsic the part of HRV that is not related to respiration,
because it cannot be recorded independently and might be over-
lapped by other larger influences such as RSA. The intrinsic RR time
series RRintri(n) is modeled using pink Gaussian noise [25]. This
series resembles the theoretical RR time series that is free of any
influence from respiration. The respiration signal resp(n) is modeled
using a harmonic function with time varying frequency. In order to
model coupling, the respiration signal is first filtered by a moving
average (MA) system G(k) and added to the intrinsic RR time series
[21]. The resulting signal represents the measured RR time series
RRmeas(n) that would have been computed from the recorded ECG.
This model is characterized by an open-loop configuration allowing
an external input. This is a specific case of the more general family
of multivariate dynamic adjustment (MDA) models [26].

Mathematically speaking, the signals are modeled in the follow-
ing way:

• The intrinsic RR time series is modeled by random Gaussian pink
noise. It is characterized by a spectral power density that is pro-
portional to the reciprocal of the frequency SRRintri

(f ) ∝ 1/f and
by a normal amplitude distribution N(0; �) in the time domain.
This signal can be achieved by filtering white Gaussian noise with
a low pass filter [27].

• Respiration is modeled with a harmonic function of the general
form resp(n) = A · cos(ϕ(n)). The time varying phase of the cosine
function is defined as a time discrete approximation of the inte-
gral of the time varying frequency f(n):

ϕ(n) = 2�

n∑
k=0

f (k)
fs

where fs is the sampling frequency in Hz used in the real signal
processing algorithm. In our study, fs was  set to be 4 Hz, which is
a typical value used in literature [28]. The time varying frequency
f(n) is defined using the hyperbolic tangent (tanh) function which
has a sigmoid shape. The function is parametrised to have lower
and upper bounds f0 − f1 and f0 + f1 and time discrete constant
fs · T. It is centered at the sample point n0:

f (n) = f0 + f1 · tanh
(

n − n0

fs · T

)

The parameters A, f0, f1, T and n0 can be freely chosen by the user
to recreate different scenarios. In this work, we investigated two
types of respiration signals, the constant and the natural breath-
ing. In the case of constant breathing, the frequency f0 comes
randomly from the interval f0 ∈ [0.1;0.6] Hz and f1 = 0.005 Hz is
chosen fixed to ensure that spectral power is localized around
f0. In the case of natural breathing, the frequency f0 is also ran-
domly chosen from the interval f0 ∈ [0.1;0.6] Hz and f1 is an
aleatory variable from the interval f1 ∈ [0;0.1]. For both types
of signals, the other parameters present in the sigmoid function
were randomly chosen from the following intervals: A ∈ [0.2;5],
n0 = [180;540], T ∈ [10;30] s and a signal length of N = 720 sample
points, or three minutes, was  set fixed. A large number of repeti-
tions was  performed and statistics were carried out for evaluation
purposes. The simulation study is presented in detail in
Section 3.

The chosen parameters are in accordance with the signals
included in the two studies presented in this work, which
facilitates the comparability between results obtained from sim-
ulation and real measurements. Furthermore, the parameters are
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