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a b s t r a c t

The paper considers event-triggered leader–follower tracking control for multi-agent systems with
general linear dynamics. For both undirected and directed follower graphs, we propose event triggering
rules which guarantee bounded tracking errors. With these rules, we also prove that the systems do not
exhibit Zeno behavior, and the bounds on the tracking errors can be tuned to a desired small value.
We also show that the combinational state required for the proposed event triggering conditions can
be continuously generated from discrete communications between the neighboring agents occurring at
event times. The efficacy of the proposed methods is discussed using a simulation example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cooperative control of multi-agent systems has received
increasing attention in the past decade, see Ren and Beard
(2008) and references therein. However, many control techniques
developed so far rely on continuous communication between
agents and their neighbors. To address this concern, several
approaches have been proposed in recent years. One approach is
to apply sampled control Xie, Liu, Wang, and Jia (2009). However
in sampled data control schemes control action updates continue
periodically with the same frequency even after the system has
reached the control goal with sufficient accuracy and no longer
requires intervention from the controller. Efforts to overcome
this shortcoming have led to the idea of triggered control. Self-
triggered control strategies (Dimarogonas, Frazzoli, & Johansson,
2012; Heemels, Johansson, & Tabuada, 2012; Mazo, Anta, &
Tabuada, 2010) employ a triggering mechanism to proactively
predict the next time for updating the control input ahead of
time, using the current measurements. On the other hand, event-
triggered controllers (Dimarogonas et al., 2012; Dimarogonas &
Johansson, 2009; Heemels & Donkers, 2013; Lunze & Lehmann,
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2010; Tabuada, 2007;Wang& Lemmon, 2011) trigger control input
updates by reacting to excessive deviations of the decision variable
from an acceptable value, i.e., when a continuously monitored
triggering condition is violated. This latter approach is the main
focus in this paper.

The development of event-triggered controllers remains chal-
lenging, because the agents in a multi-agent system do not have
access to the complete system state information required to make
decisions about control input updates. To prove the concept of
event-triggering, the early work was still assuming continuous
communication between the neighboring agents (Dimarogonas
et al., 2012; Dimarogonas & Johansson, 2009). To circumvent this
limitation, several approaches have been proposed, e.g., see Adaldo
et al. (2014), Fan, Feng,Wang, and Song (2013) Seyboth, Dimarogo-
nas, and Johansson (2013), Garcia, Cao, and Casbeer (2014), Liuzza,
Dimarogonas, di Bernardo, and Johansson (2013), Meng and Chen
(2013) and Zhu, Jiang, and Feng (2014).

All the papers mentioned above considered the event-triggered
control problem for leaderless systems. The leader-following
control is one of the important problems in cooperative control
of multi-agent systems (Hong, Hu, & Gao, 2006; Jadbabaie, Lin,
& Morse, 2003; Ren & Atkins, 2007; Ren & Beard, 2008), and the
interest in event-based solutions to this problem is growing (Hu,
Chen, & Li, 2011; Hu, Geng, & Zhu, 2015; Li, Liao, Huang, & Zhu,
2015; Zhang & Hong, 2012). General multidimensional leader
following problems still remain technically challenging, and the
development is often restricted to the study of single or double
integrator dynamics (Hu et al., 2011, 2015; Li et al., 2015; Zhang &
Hong, 2012). Zeno behavior presents another challenge, and is not
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always excluded (Hu et al., 2011; Zhang & Hong, 2012). Excluding
Zeno behavior is an important requirement on control protocols
since excessively frequent communications reduce the advantages
of using the event-triggered control.

In this paper, we also consider the event-triggered leader-
following control problem for multi-agent systems. Unlike (Hu
et al., 2011, 2015; Li et al., 2015; Zhang & Hong, 2012), the
class of systems considered allows for general linear dynamics.
Also, the leader can be marginally stable or even unstable. For
both undirected and directed system interconnections,we propose
sufficient conditions for the design of controllers which guarantee
that the leader tracking errors are contained within certain
bounds; these bounds can be optimized by tuning the parameters
of the design procedure. We also show that with the proposed
event-triggered control protocols, the system does not exhibit
Zeno behavior. These results are the main contribution of the
paper.

Its another contribution is the event-triggered control protocols
that do not require the neighboring agents to communicate
continuously. Instead, the combinational state to be used in the
event triggering condition is generated continuously within the
controllers, by integrating the information obtained from the
neighbors during their communication events. The idea is inspired
by Fan et al. (2013), however, the procedure in Fan et al. (2013)
developed for single integrator systems cannot be applied tomulti-
agent systemswith general linear dynamics considered here, since
in our case dynamics of the measurement error depend explicitly
on the combinational state. Also different fromFan et al. (2013), the
proposed algorithm involves one-way communications between
the neighboring agents. The combinational state is computed
continuously by each agent and is broadcast to its neighbors only
at the time when the communication event is triggered at this node
and only in one direction. The neighbors then use this information
for their own computation, and do not send additional requests to
measure the combinational state. This is an important advantage
of our protocol compared with event-triggered control strategies
proposed in Fan et al. (2013), Hu et al. (2011, 2015), Li et al.
(2015) and Zhu and Jiang (2015). In these references, when an
event is triggered at one agent, it must request its neighbors for
additional information to update the control signals. Owing to this,
our scheme is applicable to systems with a directed graph which
only involves one way communications.

In comparison with the recent work on event-triggered control
for general linear systems (Garcia et al., 2014; Liu, Cao, De Persis,
& Hendrickx, 2013; Zhu & Jiang, 2015; Zhu et al., 2014), the main
distinction of our method is computing the combinational state
directly using the neighbors’ information. This allowed us to avoid
additional sampling when checking event triggering conditions,
cf. Zhu and Jiang (2015); Zhu et al. (2014). In contrast in Garcia
et al. (2014), to avoid continuous transmission of information, each
agent was equipped with models of itself and its neighbors. In Liu
et al. (2013), estimators were embedded into each node to enable
the agents to estimate their neighbors’ states. Both approaches
make the controller rather complex, compared with our controller
which does not require additional models or estimators. The
leader–follower context and the treatment of both directed and
undirected versions of the problem are other distinctions.

The paper is organized as follows. Section 2 includes the
problem formulation and preliminaries. The main results are
given in Sections 3 and 4. In Section 3 we consider the case
when the system of followers is connected over a directed graph.
Although these results are applicable to systems connected over
an undirected graph as well, the symmetry of the graph Laplacian
makes it possible to derive an alternative control design scheme
in Section 4. In Section 5, the generation of the combinational
state is discussed. Section 6 provides an illustrative example. The
conclusions are given in Section 7.

Throughout the paper, ℜ
n and ℜ

n×m are a real Euclidean n-
dimensional vector space and a space of real n × m matrices.
⊗ denotes the Kronecker product of two matrices. λmax(·) and
λmin(·) will denote the largest and the smallest eigenvalues of a
real symmetric matrix. For q ∈ ℜ

n, diag{q} denotes the diagonal
matrix with the entries of q as its diagonal elements. IN is theN×N
identity matrix. When the dimension is clear from the context, the
subscript N will be suppressed.

2. Problem formulation and preliminaries

2.1. Communication graph

Consider a communication graph Ḡ = (V̄, Ē, Ā), where V̄ =

{0, . . . ,N} is a finite nonempty node set, Ē ⊆ V̄ × V̄ is an
edge set of pairs of nodes, and Ā is an adjacency matrix. Without
loss of generality, node 0 will be assigned to represent the leader,
while the nodes from the set V = {1, . . . ,N} will represent the
followers.

The (in general, directed) subgraph G = (V, E, A) obtained
from Ḡ by removing the leader node and the corresponding edges
describes communications between the followers; the edge set
E ⊆ V × V represents the communication links between them,
with the ordered pair (j, i) ∈ E indicating that node i obtains
information from node j; in this case j is the neighbor of i. The
set of neighbors of node i in the graph G is denoted as Ni =

{j|(j, i) ∈ E}. Following the standard convention, we assume that
G does not have self-loops or repeated edges. The adjacencymatrix
A = [aij] ∈ ℜ

N×N of G is defined as aij = 1 if (j, i) ∈ E , and aij = 0
otherwise. Let di =

N
j=1 aij be the in-degree of node i ∈ V and

D = diag{d1, . . . , dN} ∈ ℜ
N×N . Then L = D − A is the Laplacian

matrix of the graph G, it is symmetric when G is undirected.
We assume throughout the paper that the leader is observed by

a subset of followers. If the leader is observed by follower i, then
the directed edge (0, i) is included in Ē and is assigned with the
weighting gi = 1, otherwise we let gi = 0. We refer to node i with
gi ≠ 0 as a pinned node. Let G = diag{g1, . . . , gN} ∈ ℜ

N×N . The
system is assumed to have at least one follower which can observe
the leader, hence G ≠ 0.

In addition, we assume the graph G contains a spanning tree
rooted at a pinned node ir , i.e., gir > 0. Then,−(L+G) is a Metzler
matrix. According to Hu and Hong (2007), the matrix −(L + G)
is Hurwitz stable,1 which implies that −(L + G) is diagonally
stable (Kaszkurewicz & Bhaya, 2000). That is, there exists a positive
definite diagonal matrix Θ = diag{ϑ1, . . . , ϑN} such that H =

Θ−1(L + G) + (L + G)′Θ−1 > 0. We will also use the following
notation: α =

1
2λmin(H), ϑmin = mini(ϑi), ϑ = mini(ϑ

−1
i ),

P = Θ−1(L + G)(L + G)′Θ−1 and F = (L + G)′(L + G).

2.2. Problem formulation

Consider a multi-agent system consisting of a leader agent and
N follower agents. Dynamics of the ith follower are described by
the equation

ẋi = Axi + Bui, (1)

where xi ∈ ℜ
n is the state, ui ∈ ℜ

p is the control input. Also, the
dynamics of the leader agent are given by

ẋ0 = Ax0. (2)

1 These properties of the matrix L + G can be guaranteed under weaker
assumptions on the graph G (Hu & Hong, 2007).
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