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a  b  s  t  r  a  c  t

The  problem  of epidemic  control  has  to face with  the  resources  allocation;  a change  in the  strategy
should  be  advisable  during  the  epidemic  spread  in  view  of  a rational  use  of the  limited  resources.  The
SIR  epidemic  model,  which  describes  the dynamics  of Susceptible,  Infected  and  Removed  subjects,  is
considered  and  an optimal  vaccination  strategy  is  proposed  by  introducing  a  cost  index  that  weights
differently  the  control  depending  on  the  severity  of  the  disease.  The  introduced  weight  is a step-wise
one  and  the  switching  instants  are  not  known  in  advance.  The  meaningfulness  of this  approach  has  been
tested  and  compared  with  the case  of a constant  weight  for the control,  showing  a  more  efficient  resource
allocation  in  the proposed  approach.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Epidemic models are a mathematical representation of diseases
whose spread, if not controlled, may  be particularly dangerous all
over the world due mostly to the increased number of travelling
people. These models are characterized by variables representing
different status of the subjects. The most common are: the Suscepti-
bles (S), that are subjects that may  catch the disease, the Infected (I),
that are the subjects that already caught the disease, the Removed
(R), that are the subjects that aren’t infected anymore, the Quar-
antine subjects (Q) that are the ones that can’t have contacts with
others, the Cross-immune subjects (C) that represent the subjects
that may  caught the disease again. Sometimes it may  be useful
to distinguish among the infected subjects (I) the ones that are
infected but not yet infectious (E).

Therefore, depending on the specific classes of subjects consid-
ered, the models usually studied are the SIR, the SIRS, the SIRC, the
SEIR, the SEIQR and so on, [1–11].

The SIR model, originally formulated by Kermack and McK-
endrick [12], considers three classes of subjects, the Susceptible, the
Infected and the Removed. To control an epidemic model means to
introduce an external action aiming at the reduction of the effects
of the disease: the vaccine, the quarantine, the drug distribution,
for example. Among the different strategies the ones that rely in
the framework of optimal control theory have received increasing

∗ Corresponding author.
E-mail address: iacoviello@dis.uniroma1.it (D. Iacoviello).

attention [13]. The choice of the specific cost index is related to the
aims to be pursued, generally a decrease in the number of infected
subjects, with as less resources as possible. Then, a central aspect
is the definition of the cost index, [9–14].

The approach proposed in this paper introduces in the cost index
a state dependent weight for the control depending on the number
of the infected subjects, therefore changing intervention strat-
egy on the basis of the varied conditions. The switching instants
aren’t known in advance but are determined as consequence of the
dynamic variables evolution and of the optimization process. The
final time of the optimization process has to be minimized too. The
proposed cost index is applied to a generic SIR model. The paper
is organized as follows: in Section 2 the optimal control strategy is
proposed for a SIR model after some recalls of its dynamics; in Sec-
tion 3 the impact of the proposed cost index on the control strategy
is numerically analyzed. Conclusions and future developments are
outlined in Section 4.

2. Materials and methods

The SIR model is one of the most versatile one; it splits the pop-
ulation into three groups, the susceptibles (S), the infected (I) and
the removed (R), indicated in the following equations by x, y and
z respectively. A general description with birth term �, that takes
into account all the effects that make the number of susceptible
subjects increasing (immunes, newborns, new comings, and so on),
and a control aiming at a prevention action (a vaccination strategy,
for example) is [13]:

ẋ(t) = −ˇx(t)y(t) − x(t)u(t) + � (1)
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ẏ(t) = ˇx(t)y(t) − �y(t) (2)

ż(t) = �y(t) (3)

x(t0) = x0 y(t0) = y0 (4)

with  ̌ and � parameters chosen depending on the specific epi-
demic disease and u(t) a bounded control.

Be ym ≥ 0 the minimum threshold over which a control action
is needed, the aim is to determine the optimal control, continuous
almost everywhere and satisfying the box constraint 0 ≤ u(t) ≤ U,
and the final time T > 0 that minimize the cost index

J(u, T) =

T∫
0

[
K1 + K2x(t)u(t) + K3x(t) + K4y(t) + P (y(t)) u2(t)

]
dt,

K1, K2, K3, K4 ∈ R+

(5)

which brings the number of infected subjects to the threshold value
ym.

The constraint 0 ≤ u(t) ≤ U can be also written, in view of the
approach proposed, as

q1(t) = −u(t) ≤ 0, q2(t) = u(t) − U ≤ 0

The weight P (y(t)) changes in nonlinear way depending on the
number of the infected subjects. The interval [ym, +∞)is divided
into N subintervals [yi, yi+1) ,  i = 1, ..., N, y1 = ym and yN+1 = +∞.
P (y(t)) is assumed such that:

P (y(t)) = ˛i for y(t) ∈ [yi yi+1) ,  ˛i ∈ R+, i = 1, ..., N

The quantities ˛i are chosen so that the higher is the severity of the
disease, the lower is the cost of the control action in the cost index:
˛1 > ˛2 > · · · > ˛N .

In the cost index (5) the term K1 weights the time to eradicate
the epidemic as soon as possible. Two terms depend directly on the
number of the susceptibles and infected subjects, weighted respec-
tively by K3 and K4; there is also a mixed term that is the control
weighted by the number of susceptibles, therefore the assumed
vaccination effort is also susceptible-dependent. The control acts
when y(t) ≥ ym, so, for the present application, it can be assumed
that y(t0) = y0 ≥ ym; if y0 ∈ [yi, yi+1) for some i, the cost index to
be firstly minimized is:

J(u, T) =
T∫
tj

[
K1 + K2x(t)u(t) + K3x(t) + K4y(t) + ˛i u

2(t)
]
dt,

j = 0

To solve the problem the classical optimal control theory is
applied; let’s define the Hamiltonian in the normal case:

H(x(t), y(t), u(t), t̄j, �1(t), �2(t)) = K1 + K2x(t)u(t) + K3x(t)

+K4y(t) + ˛iu
2(t) + �1(t)

(
−ˇx(t)y(t) − x(t)u(t) + �

)
+�2(t)

(
ˇx(t)y(t) − �y(t)

)
where �1(t) and �2(t) are the Lagrange multipliers.

The necessary optimality conditions are, [13]

�̇1(t) = −∂H
∂x

=

−K2u(t) − K3 + ˇy(t)�1(t) + �1(t)u(t) − ˇy(t)�2(t)

�̇2(t) = −∂H
∂y

= −K4 + ˇx(t)�1(t) − ˇx(t)�2(t) + ��2(t)

�̇3(t) = −∂H
∂z

= 0

0 = ∂H
∂u

+ ∂q1

∂u1
�1 + ∂q2

∂u1
�2

= 2˛iu(t) + K2x(t) − �1(t)x(t) − �1(t) + �2(t)

�1(t), �2(t) ∈ R, �1, �2 ∈ C0 almost everywhere
q1(t)�1(t) = 0, q2(t)�2(t) = 0
�1(t) ≥ 0, �2(t) ≥ 0

H|T = 0 (6)

�1(T) = −0, �2(T) = −ς, �3(T) = 0 ς ∈ R (7)

The control obtained is

u(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x(t)(�1(t) − K2) < 0

x(t)(�1(t) − K2)
2˛i

if 0 <
x(t)(�1(t) − K2)

2˛i
< U

U if
x(t)(�1(t) − K2)

2˛i
< U

(8)

If there exists an instant tj+1 < T such that y(tj+1) = yi+1 or y(tj+1) =
yi, then the obtained solution is a feasible one limited to the interval[
tj , tj+1

)
and, consequently, tj+1 is a switching instant.

Setting j = j + 1, the procedure is iterated.
Otherwise, when y(t) ∈ [y1, y2), ∀t ∈

[
tj, T

]
, and therefore

y(T) = y1 = ym, the procedure ends and the optimal solution
(xo(t), yo(t), zo(t), uo(t), To) is obtained by composing the
expressions defined in each subintervals

[
tj, tj+1

)
.

In the solution represented in (8) the costate �1(t) and the state
x(t) appear explicitly; they can be determined with y(t) and the
costate �2(t) taking into account the initial conditions (4) with Eqs.
(6) and (7).

3. Numerical results

In this Section some numerical results are used to show the
behavior of the proposed approach and to compare it with the clas-
sical approach which makes use of constant weights coefficients in
the cost function. Consider the model described in Eqs. (1)–(4), with

 ̌ = 0.005, � = 0.7, � = 80, U = 1 and initial conditions, at time
t0 = 0, chosen as x0 = 500, y0 = 101 and z0 = 0.

In the simulations, for sake of simplicity only two subintervals
have been fixed. They correspond, with respect to the infection
propagation, to two  operative conditions: a low dangerous situ-
ation, in which the infected subjects are less than 40% of the initial
population of susceptibles, and a very serious condition, in which
they exceed such a threshold.

So, according to the problem formulation, one may set{
P (y(t)) = ˛1 = 10 for y(t) ∈ [y1, y2) = [ym, 200)

P (y(t)) = ˛2 = 1 for y(t) ∈ [y2, +∞) = [200,  ∞)

Moreover, ym = 100 has been chosen, meaning that once the
infected becomes less than 20% of the initial population of suscepti-
bles further action is no longer required. As far as the parameters in
the cost index (5), the values K1 = 10, K2 = 0.1,K3 = 0.1, K4 = 0.1
are chosen.

The simulation results are reported hereafter. Time history of
the susceptibles as well as the infected subjects are depicted in
Fig. 1 while Fig. 2 shows the behavior of the optimal control.

In order to put in evidence if, how and where the proposed
switching cost function represents an improvement with respect
to more traditional approaches, a comparison between this opti-
mal  solution and the solutions with constant weights,  ̨ = 1 and
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