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a b s t r a c t

An adaptive boundary control strategy is developed for the suppression of store induced oscillations in
the bending and twisting deflections of an uncertain flexible aircraft wing. A Lyapunov-based stability
analysis is used to show that the total energy in the system, and hence the distributed states of the system,
remains bounded and decays asymptotically to zero. Simulation results illustrate the performance of the
developed controller.

© 2016 Published by Elsevier Ltd.

1. Introduction

Store induced oscillations commonly described as Limit Cycle
Oscillations (LCO) occur on current high performance fighter
aircraft and are expected to remain an issue for next generation
aircraft (Beran, Strganac, Kim, & Nichkawde, 2004). Store induced
oscillations are characterized by antisymmetric, non-divergent
periodic motion of the wings. Asymmetry in the wing oscillations
cause a lateralmotion in the fuselage that hinders a pilot’s ability to
read cockpit instruments and heads-up display which can lead to
the premature termination of the mission or avoidance of a region
of the flight envelope crucial to combat survivability. Furthermore,
questions have been raised regarding the safe release of wing
stores, the target acquisition of smart munitions, and the accuracy
of unguided ordnance (Bunton & Denegri, 2000). These concerns
necessitate the development of a control strategy designed to
suppress store induced oscillations.

In a wide range of Mach numbers (Sheta, Harrand, Thompson,
& Strganac, 2002), store induced oscillations are prominent. Store
induced oscillations in the subsonic range provide additional
acceleration and result in additional force on the aircraft, which
affects its performance. Experimental investigations of oscillation
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of nonlinear aeroelastic systems in the subsonic airflow region
are found in Platanitis and Strganac (2004), Sheta et al. (2002)
and Strganac, Ko, Thompson, and Kurdila (2000). Experimental
results in Sheta et al. (2002) indicate the importance of addressing
oscillations in the subsonic airflow region.

Previously developed control strategies have focused on sup-
pressing oscillation behavior in a two-dimensional airfoil system.
Several of these control strategies require knowledge of the sys-
tem dynamics, including linear–quadratic regulator (Block & Str-
ganac, 1999; Prime, Cazzolato, Doolan, & Strganac, 2010; Zhang &
Ye, 2007), feedback linearization (Ko, Strganac, & Kurdila, 1998),
linear reduced order model-based control approaches (Danowsky
et al., 2010; Thompson et al., 2011), a Nissim aerodynamic energy-
based control approach (Cavagna, Ricci, & Scotti, 2009), and state-
dependent Riccati equation and sliding mode control approaches
(Elhami & Narab, 2012). Many adaptive control strategies have
been developed for uncertainties in the torsional stiffness model
such as adaptive feedback control for linear-in-the-parameter un-
certainties (Ko, Strganac, & Kurdila, 1999; Strganac et al., 2000).
Most recently, a RISE control structure was used to ensure asymp-
totic tracking of a two-dimensional airfoil section with modeling
uncertainties in the structural and aerodynamic properties (Bialy,
Pasiliao, Dinh, & Dixon, 2012), and then extended to compensate
for actuator saturation (Bialy, Andrews, Curtis, & Dixon, 2013).

Previously, research on control strategies for the suppression
of oscillation has been concerned with a two-dimensional airfoil
section rather than a full flexible aircraft wing. This work develops
an adaptive boundary controller for the suppression of store
induced oscillations in a full three-dimensional flexible aircraft
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wing. The dynamics of a flexible aircraft wing can be modeled,
using Hamilton’s principle (Hodges & Dowell, 1974; Hodges &
Ormiston, 1976; Martins, Mohamed, Tokhi, Sá da Costa, & Botto,
2003; Morita et al., 2002; Zhang, Xu, Nair, & Chellaboina, 2005;
Ziabari & Ghadiri, 2010), as a set of partial differential equations
(PDEs) and associated boundary conditions.

There are two boundary control methodologies that have been
developed for a system described by a set of PDEs. The first
method approximates the PDE system with a finite number of
ordinary differential equations (ODE) using operator theoretic
tools (Bucci & Lasiecka, 2010; Byrnes, Laukó, Gilliam, & Shubov,
2000; Luo, 1993; Luo & Guo, 1995) or Galerkin and Rayleigh–Ritz
methods (Christofides & Daoutidis, 1997; Meirovitch, 1967;
Shawky, Ordys, & Grimble, 2002). A boundary controller is then
designed using the resulting reduced-order model. The primary
concern with using a reduced-order model for the control design
is the potential for spillover instabilities (Balas, 1978;Meirovitch &
Baruh, 1983), in which the controller excites higher-order modes
that were neglected in the approximation. In special cases, the
placement of actuators and sensors can guarantee the neglected
modes are not excited (Balas, 1982). Specifically, placing actuators
at known zero locations of the higher-order modes will alleviate
spillover instabilities; however, this can conflict with the desire to
place actuators away from the zeros of the controlled modes.

The alternative approach is to design the controller based
on the full PDE system where model reduction techniques are
only required for implementation purposes. A PDE backstepping
strategy, described in Krstic and Smyshlyaev (2008), constructs
a state transformation using an invertible Volterra integral. The
transformationmaps the original system to an exponentially stable
target system. Due to the invertibility of the transform, stability of
the target system translates to stability of the closed-loop system
consisting of the original PDE and boundary feedback control.
While this method avoids spillover instabilities, it is limited to
linear PDEs and nonlinear PDEs of a particular form. The boundary
control strategy described in de Queiroz, Dawson, Nagarkatti, and
Zhang (2000) and de Queiroz and Rahn (2002) uses Lyapunov-
based design and analysis arguments to stabilize PDE systems.
The essence of the analysis is the assumption that for a real
physical system, if the energy of the system is bounded, then the
states that compose the energy are also bounded. Based on this
assumption, a Lyapunov-based stability analysis is used to show
that the energy in the closed-loop system remains bounded. A
PDE-based boundary control approach has been previously used
to stabilize fluid flow through a channel (Vazquez & Krstic, 2007),
maneuver flexible robotic arms (de Queiroz, Dawson, Agarwal,
& Zhang, 1999), control the bending in an Euler beam (Fard &
Sagatun, 2001;He, Ge, How, Choo, &Hong, 2011; Siranosian, Krstic,
Smyshlyaev, & Bement, 2011), regulate a flexible rotor system (de
Queiroz & Rahn, 2002; Nagarkatti, Dawson, de Queiroz, & Costic,
2001), and track the net aerodynamic force ormoment of a flapping
wing aircraft (Paranjape, Guan, Chung, & Krstic, 2013).

Many PDE-based and ODE-based control strategies have been
developed to stabilize the bending of a flexible beam such as Fard
and Sagatun (2001), Luo (1993), Luo andGuo (1995) and Siranosian
et al. (2011); however, this collection of work is focused on
structural beams and robotic arms and therefore do not encounter
the closed-loop interactions between the structural dynamics and
aerodynamics intrinsic to aircraft systems. Recently, the work
in Paranjape et al. (2013) used the PDE-backstepping method
described in Krstic and Smyshlyaev (2008) to track the net
aerodynamic forces on a flapping wing UAV whose dynamics are
represented by linear PDEs. The control objective in Paranjape et al.
(2013) was not concerned with the performance of the distributed
states, rather it focused on controlling the spatial integral of the
state variables.

Fig. 1. Schematic of the wing section., where E.A. denotes the elastic axis and C.G.
denotes the center of gravity.

The focus of the current work is the design of a controller to
suppress store induced oscillations in an aircraft wing described by
uncertain coupled nonlinear PDEs via regulation of the state vari-
ables. An adaptive boundary controller is designed to ensure the
distributed states of the flexiblewing are regulated asymptotically.
The challenge in this problem is that the uncertain nonlinear PDE
cannot be transformed into an exponentially stable target system
using theVoltera integral strategy in Krstic and Smyshlyaev (2008).
As a result, the controller is developed through a Lyapunov-based
analysis. The Lyapunov analysis is facilitated by examining the en-
ergy in the aircraft wing and through the development of novel
auxiliary terms introduced to yield favorable outcomes from the
derivative of the wing energy. Simulation results demonstrate the
open-loop oscillation and how the controller is applied to damp
out the oscillation.

2. Flexible aircraft wing model

Consider a flexible wing of length l ∈ R, mass per unit span of
ρ ∈ R, moment of inertia per unit length of Iw ∈ R, and bending
and torsional stiffnesses of EI ∈ R and GJ ∈ R, respectively, with a
store of massms ∈ R and moment of inertia Js ∈ R attached at the
wing tip. The bending and twisting dynamics of the flexible wing
are described by the following PDE system1

L̄wϕ(y, t) = ρωtt(y, t) − ρxc sin (ϕ(y, t)) ϕ2
t (y, t)

+ ρxc cos (ϕ(y, t)) ϕtt(y, t) + EIωyyyy(y, t), (1)

M̄wϕ(y, t) =

Iw + ρx2c


ϕtt(y, t)

+ ρxc cos (ϕ(y, t)) ωtt(y, t) − GJϕyy(y, t), (2)

whereω : R×R → R and ϕ : R×R → R denote the bending and
twisting displacements, respectively, y ∈ [0, l] denotes spanwise
location on the wing, xc ∈ R represents the distance from the
wing elastic axis to the wing center of gravity (as shown in Fig. 1),
and L̄w ∈ R and M̄w ∈ R denote aerodynamic lift and moment
coefficients, respectively.

Remark 1. EI , GJ and other wing parameters are considered to
be spatially invariant, although this work may be extended to
include spatially varying wing parameters by incorporating a
similar approach as in Ishihara and Nguyen (2014).

In (1) and (2), the subscripts t and y denote partial derivatives
with respect to time or the spanwise position along a wing. The
boundary conditions for tip-based control are

ω (0, t) = ωy (0, t) = ωyy (l, t) = ϕ (0, t) = 0, (3)

Ltip(t) = msωtt (l, t) − msxs sin (ϕ (l, t)) ϕ2
t (l, t)

1 Damping terms (e.g., Kelvin–Voigt damping Kangsheng & Zhuangyi, 1998)
could be added to themodel; however, the subsequent development illustrates how
to mitigate the oscillation through the closed-loop control.
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