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a  b  s  t  r  a  c  t

The  QRS  complex  recorded  from  the  surface  electrocardiogram  (ECG)  arises  from  electrical  activation  of
the  ventricular  myocardium  through  the normal  conduction  system.  The  presence  of a  fragmented  QRS
(fQRS)  complex  reflects  abnormal  electrical  activation  and  has  been  recently  shown  to identify  patients
with heart  disease  at risk of  sudden  cardiac  death  (SCD).  The  evaluation  of  fQRS  is currently  performed
qualitatively  by visual  inspection  which  can  be time  consuming  and  subject  to  interpretation.  Moreover,
qualitative  assessment  of QRS  for fragmentation  may  be  insensitive  to  more  subtle  deflections  in the
QRS  complex  that may  be  equally  prognostic.  This  study  proposes  an  automated  method  to  quantify
QRS  fractionation  using  intrinsic  time-scale  decomposition  (ITD).  Instantaneous  morphology  features  are
extracted  from  the decomposed  QRS signal  to index  variations  in  its shapes.  Our  quantitative  fQRS  metric
was  found  to be  significantly  greater  in  QRS  complexes  with  fragmentation  compared  to  normal  QRS
complexes  derived  from  real-world  ECGs  in  the  Physikalisch-Technische  Bundesanstalt  (PTB)  database.
ROC  analysis  showed  an  area  under  the  curve  of 0.96  when  fQRS  was  quantified  from  the  precordial
ECG  leads,  V1–V6.  Thus,  quantification  of  fQRS  using  the  proposed  ITD-based  method  can  accurately
identify  fQRS.  Our  approach  shows  tremendous  potential  and  could  be investigated  further  for  SCD  risk
assessment  in  patients  with  heart  disease  by  improving  the identification  of fQRS  that  may  or  may  not
be  visually  apparent.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Sudden cardiac death (SCD) is the leading cause of death in
North America with the majority of cases arising from ventricular
tachyarrhythmias [1]. The normal ventricular myocardium is acti-
vated synchronously through the His-Purkinje conduction system;
thereby generating a narrow QRS complex on the surface electro-
cardiogram (ECG). In the setting of heart disease with impairment
of His-Purkinje conduction and myocardial scar, electrical conduc-
tion can be markedly delayed which will in turn prolong the QRS
complex. Slow electrical conduction increases the risk of reen-
trant ventricular tachyarrhythmias and QRS prolongation is a risk
marker for SCD. However the predictive accuracy of QRS prolon-
gation alone is poor and there is a growing need to improve risk
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assessment in cardiomyopathy patients. To address this need, a
novel QRS marker known as fragmented QRS  (fQRS) has been
proposed which has been shown to predict arrhythmic events in
patients with heart disease [2]. The available information about
this morphological ECG abnormality and its significance in vari-
ous cardiac conditions has been summarized in [3]. Currently, fQRS
is defined qualitatively based on visual inspection of the QRS mor-
phology for various morphologic deviations, including the presence
of one or more additional R waves, or notching in the nadir of the
R wave or the S wave [2]. However, manual fQRS labeling could
be tedious and time consuming and the subjective identification
of fQRS may  lead to potentially large observer variability. Thus, an
automated, quantitative assessment of fQRS is needed to improve
the reliability as well as sensitivity of this metric and broaden its
clinical application in risk assessment [4].

The qualitative definition of fQRS provides the framework for
quantitative fQRS analysis. Existing fQRS quantification is there-
fore mainly based on the identification of transient high frequency
riding waves superimposed on the normal QRS complex which has
inherently larger amplitude and lower frequency [5]. In literature,
researches have been focused on identifying and associated the
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presence of high frequency power in QRS complex to various car-
diac conditions [6–10]. On the other hand, this frequency-domain
description of fQRS is inadequate since fQRS are uniquely charac-
terized in the time domain as transient signals [11] with no defined
frequency range, which leads to the isolation of the fragmentation
by filtering or spectral analysis more challenging. A few attempts
have thus been made to quantify fQRS morphology in time domain
[11]. However, either relatively lower sensitivity reported [11], or
the adoption of predefined parameters such as cutoff frequency for
signal preconditioning [12,13] and the pre-selected basis for signal
decomposition [14] inspires further research of a fQRS morphology
quantification method with comparably high detection accuracy
but less dependency on predefined parameters. Also, the poten-
tially useful original morphology of the fragmentation could be
preserved if the signal could be decomposed using its nature basis
without preconditioning.

This study thus attempts to develop a robust diagnostic met-
ric for quantifying the fQRS morphology in temporal domain based
on the temporal locations and morphologies of the fragmentations,
with no assumption on the frequency range of fQRS and thus no pre-
defined parameters required. Given the characteristic responses of
a complex system, the QRS complex cannot be easily decomposed
into regular harmonics or any predetermined basis function, which
makes the Fourier based analysis less suitable. On the other hand,
wavelet analysis [15–18] is able to ensure a more accurate quan-
tification of abrupt signal changes, but its success relies heavily on
the a priori construction of basis function and its associated proper-
ties. This inherent property of wavelet limits its application in fQRS
morphology quantification where various unknown morphologi-
cal deviations are present in the normal QRS complex. In contrast,
empirical mode decomposition (EMD) provides an alternative solu-
tion by decomposing data into functions that are indicative of
the physical signal’s intrinsic oscillatory modes [19]. However, the
requisite sifting process for proper rotation baseline extraction pre-
vents faithful extraction of the fQRS morphology and thus restrains
the practical use of EMD  in fQRS quantification.

Recently, a new data-driven technique, referred to as intrinsic
time-scale decomposition (ITD), has been introduced by Frei and
Osorio [20] for analyzing data from nonstationary and nonlinear
processes. The usability of this technique has been investigated
for other areas of biomedical signal processing such as automated
seizure prediction [21]. It constructs the baseline signal in a real-
time manner as a linearly transformed contraction of the input
signal for intrinsic decomposition with accurate temporal local-
ization of morphology information. The approach does not require
sifting and thus avoids the practical limitations of EMD. The aim of
our study is to develop a novel fQRS quantification method based
on ITD which accurately reflects the intrinsic characteristics of the
fQRS complex. The accuracy of our approach in quantifying fQRS
was evaluated in real world ECGs from the Physionet-PTB diagnos-
tic ECG database [22].

In Section 2, we will describe the signal characteristics of the QRS
complex and introduce the proposed fQRS quantification methods.
Our results will be presented and compared with conventional sig-
nal processing techniques in Section 3, followed by our conclusions
in Section 4.

2. Methods

The outline of the method is illustrated in Fig. 1 with individual
steps being elaborated in the following subsections. The proposed
method first decomposes the input ECG signals X into four com-
ponents C{1,. . .,4} with well defined instantaneous frequency and
amplitudes carrying precise temporal information and high tempo-
ral resolution. The second and third components C{2,3} are adopted

to delineate QRS complex from the continuous ECG signals. The
morphology features |A| and f are then extracted via single-wave
analysis of the delineated first component C1, and matrix M is even-
tually computed for the quantification of fQRS complex.

2.1. Signal decomposition by ITD

The fQRS complex is identified as transient waves with low-
amplitude and relatively higher frequency (as compared to the
underlying QRS complex) being superimposed on the normal QRS
complex with inherently larger amplitude and relatively lower fre-
quency. Without a priori knowledge on a specific fQRS complex, we
define the ECG signal X as the sum of a monotonic trend and proper
rotation components, for which each component has strictly pos-
itive values at all local maxima and strictly negative values at all
local minima [19]. The instantaneous amplitude and frequency can
thus be well defined in the defined proper rotation components.

Intrinsic time-scale decomposition (ITD) is specifically formu-
lated for application in non-linear or non-stationary signals with
underlying dynamics that change on multiple time-scales simul-
taneously. As introduced in [20], an input signal X(t) can be
decomposed into a baseline LX(t), with L being a baseline sig-
nal extraction operator, and a proper rotation component HX(t) =
X(t) − LX(t) with the highest relative frequency present in the
input. Here, H = 1 − L is a proper-rotation-extracting operator. The
process can then be iterated by reapplying L on the baseline signals
extracted as:

X(t) = LX(t) + HX(t)

= (H + L)LX(t) + HX(t)

=
(
H

p−1∑
i=0

Li + Lp

)
X(t)

=
p−1∑
i=0

Ci+1 + LpX(t)

(1)

In this equation, L is the piece-wise linear baseline-extracting oper-
ator between successive extrema with temporal locations denoted
by �{k|k=1,2,. . .,K} with K as the total number of extrema in a finite
signal X(t). Please note that K would not have fixed value when the
decomposition is applied on real time signal. Here, Ci+1 denotes the
(i + 1)th level proper rotation component, C{1,2,. . .,p}, and LpX(t) is
the lowest frequency baseline extracted before the decomposition
is stopped. The value of p can either be set to extract the monotonic
baseline signal, or it can be chosen to control when the decom-
position stops. In this paper, the information of QRS complex has
been observed to be always confined within the first 3 proper rota-
tion components. p = 3 is therefore chosen which decomposes the
input ECG signal into 3 proper rotation components C1, C2, C3, and
1 baseline component.

More specifically, assume X(t) has real values between t ∈ (0,
�k+2] and both LX(t) and HX(t) are defined on [0, �k], the piece-wise
baseline-extracting operator could be defined for t ∈ (�k, �k+1] as:

LX(t) = LX(�k) +
(

LX(�k+1) − LX(�k)
X(�k+1) − X(�k)

)
(X(t) − X(�k)), (2)

with

LX(�k+1) = 1
2

[X(�k) + X(�k+1)] + 1
2

(
�k+1 − �k

�k+2 − �k

)
(X(�k+2) − X(�k))

(3)

The decomposition is initialized in the interval t ∈ [0, �1] as
LX(t) = (X(0) + X(�1))/2. The baseline constructed preserves the
monotonicity of the input signal X(t) between extrema, while the
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