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a  b  s  t r  a  c  t

Neural  oscillations  and  their  spatiotemporal  interactions  are of interest  for the  description  of  brain  mech-
anisms.  This  study  offers  a  novel  third  order  spectral  coupling  measure  named  “sliced  bicoherence”.  It  is
the  diagonal  slice  of  cross-bicoherence  allowing  an  efficient  quantification  of  the  nonlinear  interactions
between  neural  sources.  Our  methodology  comprises  an  indirect  estimation  method,  a  parametric  con-
fidence  level  formula  and  a subtracted  version  for  robustness  to  volume  conduction.  The methodology
provides  an  efficient  estimation  of third-order  nonlinear  cross  relations  reducing  the  complexity  to  the
same order  of  second-order  coherence  computation.  Unlike  other  bispectral  measures,  the  suggested
measure  solely  holds  terms  related  to cross  relations  between  channel  sources  and  omits the  possi-
ble  strong  autobispectral  relations.  Feasibility  and  robustness  of  the methodology  are  demonstrated
both  on  simulated  and  publicly  available  MEG  data.  The  latter  were  collected  for  a motor  task  and  an
eyes-open  resting  state.  Analytical  confidence  level  marked  the  non-significant  couplings.  Simulations
confirmed  that  the subtracted  bicoherence  enabled  robustness  to volume  conduction  by avoiding  the
spurious  nearby  channel  couplings.  Central  regions  were  shown  to be  coupled  with  muscular  activity
by  sliced  bicoherence.  Couplings  for spontaneous  data  occurred  particularly  at  theta  and  alpha  bands.
Volume-conduction  related  bicoherence  values  originated  especially  from  the  low  frequencies  below
5  Hz.  The  suggested  nonlinear  measure  is promising  to  be a part of  the  rich  collection  of the  multichannel
electrophysiological  brain  connectivity  metrics.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Neural oscillations have been assumed to play a fundamen-
tal role during the functioning of normal and pathological brain.
Specifically, neural synchronization is known to be an essential
means for the communication of spatially distant oscillatory net-
works in the brain [1,2]. Synchronization is achieved through
interaction of massive neural populations either at one frequency or
multiple frequencies. Coherence is a well-known measure to obtain
linear phase and/or amplitude relations between two sites at one
specific frequency. Recent years have also witnessed the ubiqui-
tous use of cross-frequency measures [3] such as phase-amplitude
coupling which quantifies low frequency phase and high fre-
quency amplitude synchronization [4] and amplitude-amplitude
correlation [5,6]. Various studies have shown that synchronization
measures may  signify genuine neural interactions characterizing
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the fundamental mechanisms of the brain for medical [7], task-
related [8] and resting states [9].

Rapid estimation of neural synchronization measures is of
utmost importance while revealing the brain networks from macro
scale electrophysiological multichannel data. Thus, employed
methods need not only yield computationally affordable estima-
tions of synchronization measures but should also allow efficient
determination of statistical significance. Examples for the latter
utilize the simple parametric formulae assuming standard distri-
butions (Gaussian, uniform etc.) for the assessment of coherence
[10] and phase-amplitude coupling [11] confidence limits.

There have been various studies using bispectrum and its nor-
malized version named as bicoherence on EEG and MEG  data
[12–16]. We  would like to emphasize the expensive computational
cost as one of the main obstacles over the bispectral measures.
A pairwise bispectral analysis of multichannel data requires esti-
mates in the order of ∼N2 × M2, where N and M denote the number
of channels and the number of sampled frequencies, respectively. In
order to alleviate the huge computational cost of bispectral analy-
sis, Chella et al. [16] applied principal component analysis to reduce
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the data dimension prior to the parameter estimation. However,
this operation alone still cannot decrease the degree of the com-
plexity but rather reduces the number of channels to the number
of principal components.

Current study presents an efficient indirect estimation of diag-
onal slice of cross-bicoherence (normalized cross-bispectrum),
hence reducing the complexity to the same order of coherence com-
putation. We  also present simple formulae to obtain the confidence
limits of the estimate. The suggested procedure allows feasible
extractions of higher-order spectra related brain connectivity from
data with high number of channels and low computational cost,
making it computationally comparable to that of the classical
coherence and the power spectrum.

2. Methods

The 1,1,2 cross-bicoherence for two signals x1(n) and x2(n) is
given by

b12 (f1, f2) = |E{X1 (f1)X1 (f2)X2 ∗ (f1 + f2)}|2
S1 (f1) S1 (f2) S2 (f1 + f2)

(1)

where superscript * stands for the complex conjugate and E{} is the
statistical expectation operator [17]. Here X and S denote Fourier
coefficients and spectra respectively. Please note that the rest of the
text shall consider a particular slice of bispectrum, i.e., the diagonal
slice where f1 = f2. Despite not being explicitly stated, higher-
order couplings in this slice were commonly observed in empirical
neuroelectrophysiological studies (see Section 4, for some exam-
ples). Nevertheless, in principle, it is straightforward to select any
other slice of the cross-bispectrum to proceed with the suggested
methodological approach.

2.1. Diagonally sliced 1,1,2 cross-bicoherence: definition and
relation to coherence

For the sake of brevity, the measure in the subtitle shall be called
“sliced bicoherence” throughout this paper. We  would like to con-
sider sliced bicoherence in analogy with the well-known coupling
measure of coherence, which is defined for two signals x1(n) and
x2(n) as [18,19]:

c12(f ) = |S12(f )|2
S1(f )S2(f )

=
|E

{
X1(f )X2 ∗ (f )

}
|2

S1(f )S2(f )
.  (2)

Similar to the coherence, sliced bicoherence for the signals x1(n)
and x2(n) can be formulated as:

b12(f ) = |B112(f, f )|2
S1

2(f )S2(2f  )
=

|E
{
X1

2(f )X2 ∗ (2f  )
}

|2

S1
2(f )S2(2f  )

(3)

where B denotes (cross) bispectrum.
Please notice the structural similarity of coherence (Eq. (2)) and

sliced bicoherence (Eq. (3)) formulations. Some essential distinctive
properties may  be listed as follows:

1. Coherence is a 2nd order cross-spectral measure. While sliced
bicoherence is a 3rd order one.

2. Coherence is a linear measure. Input and output signals of a linear
filter are also perfectly coherent. While sliced bicoherence is a
nonlinear measure.

3. Unlike coherence, sliced bicoherence is not symmetric, i.e.,
b12(f) /= b21(f). As it is clear from Eq. (3) that b12(f) implies the
relation of the frequency component at f in the first signal to the
component at 2f in the second one, while the other way  around
is the case for b21(f).

4. Two signals are perfectly coherent if they are 1:1 linear phase
locked at the same frequency f. While two signals are perfectly

sliced bicoherent if they are 1:2 quadratic phase locked at a fre-
quency f for one signal and its double 2f for the other signal.

5. A signal is perfectly coherent with itself, i.e., c11(f) = c22(f) = 1 for
∀f. This is not the case for sliced bicoherence.

2.2. Estimation

The IDFT of the numerator of Eq. (3) for “autobispectrum”, i.e.,
B111(f, f ) was called as “sum-of-cumulants” (SOC) in signal pro-
cessing [20]. It has been used for various purposes such as system
identification [21], signal reconstruction [22], detection of nonlin-
earity [23] and robust speaker recognition [24]. It should be noted
that these studies utilized SOC to capture only “auto” bispectral fea-
tures in the aforementioned literature. The current study instead
aims at seeking cross-frequency couplings via the cross-bispectrum
related measures.

In order to estimate b12, one may  compute the average over a
number of segments, just like in coherence. Computing the whole
total bispectrum to obtain the numerator of Eq. (3) would take
considerable time, as its dimension is higher than the spectrum.
Instead, we  suggest using an indirect formula computing the cross-
bispectral slice:

where stands for Discrete Fourier Transform, * is the convolution
operator and

y2(n) =
{
x2(N − 1 − n/2),  n is even

0, n is odd
. (5)

A similar formula to Eq. (4) has been used for the computation
of “auto” bispectrum in some studies [22,24]. The validity of Eq. (4)
can be shown using the convolution theorem (see Appendix A).

2.3. Confidence limit

Halliday et al. [10] suggested a plain parametric formula
depending on the number of segments in order to compute a statis-
tical limit for coherence. Analogously, Özkurt [11] derived a formula
that gives a statistical limit for direct phase-amplitude coupling
measure. The latter formula solely depends on data length. Both
studies assumed standard and reasonable probability distributions
(such as Gaussian and uniform) that are fairly easy to manipulate
and hence obtain simple confidence limits. They enable efficient
statistical thresholds for the coupling estimates.

In a similar fashion, Haubrich [25] showed that the 0.95 con-
fidence level for bicoherence is 3/N for signals with Gaussian
probability distributions, where N denotes the number of segments.
One should note that Gaussian signals ideally would have zero bico-
herence. Hence the derived formula provides a lowest limit while
deciding the reliability of the resultant bicoherence value. Elgar
and Guza [26] compared this formula to the results of numerical
simulations.

We here show that Haubrich’s formula is only valid for the bico-
herence b12(f1, f2) of different frequencies, that is for f1 /= f2. Our
numerical derivation indicated that specifically for the diagonal
sliced bicoherence b12(f ), the confidence limit becomes 6/ (N + 1)
instead, that is for f1 = f2. Please see Appendix B for the deriva-
tion and note that we  additionally validated the confidence level
derivation with a Monte Carlo simulation.

2.4. Use in electrophysiology

One can reliably estimate the oscillatory coupling between a fre-
quency of a signal in a channel and the double frequency in another
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