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a b s t r a c t

This paper studies strong delay-independent stability of linear time-invariant systems. It is known that
delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear
matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency domain is
discretized into several sub-intervals, and piecewise constant Lyapunovmatrices are employed to analyze
the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov
lemma, new necessary and sufficient criteria are then obtained for strong delay-independent stability
of systems with a single delay. The effectiveness of the proposed method is illustrated by a numerical
example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many practical systems such as industrial processes and
networked control systems, time-delay phenomena are inevitably
encountered, and are often the key factor that affects the
performance (Gu, Kharitonov, & Chen, 2003; Wang, Gao, & Qiu,
2015). Time-delay systems, although with a long history, are one
of the most active topics in control and system theory in the past
two decades, see Gu and Niculescu (2003) and Sipahi, Niculescu,
Abdallah, Michiels, and Gu (2011) and the references therein.
Even the most basic problem, stability analysis, of time-delay
systems is still challenging due to its infinite-dimensional nature
(Gu et al., 2003), and such study is still evolving (Sipahi et al., 2011).
Sometimes, stability of systems can be maintained for all positive
delays, thus giving the notion of delay-independent stability. This is
in contrast to delay-dependent stability, in which case the system
is stable for only certain range of delay values. In this paper, we
focus on delay-independent stability.
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The term ‘‘delay-independent stability’’ was introduced in Hale
(1977), and many criteria have been developed for testing delay-
independent stability of time-delay systems since then (see Delice
& Sipahi, 2012, Souza, de Oliveira, & Palhares, 2009 for examples of
more recent developments). Delay-independent stability itself in-
cludes two different notions, viz., strong delay-independent stabil-
ity andweak delay-independent stability (seeDefinitions 1 and 2 in
Section 2.1, respectively). The strong delay-independent stability,
albeit being as a special case of theweak delay-independent one, is
sufficiently general from a practical robustness point of view (Bli-
man, 2002). Necessary and sufficient criteria of delay-independent
stability (both strong and weak) are often developed using a fre-
quency domainmethod based on the characteristic equation. Some
typical tools used include polynomial theory (Kamen, 1982), ma-
trix pencil (Niculescu, 1998b), and robust control theory (Chen &
Latchman, 1995). In addition to direct stability test, the necessary
and sufficient conditions may also be useful in developing other
simpler sufficient conditions that are easier to test, and uncover-
ing their inherent conservatism.

A number of sufficient conditions for delay-independent sta-
bility can also be found in the literature (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994; Chen, Du, & Shafai, 1995; Kolmanovskii,
Niculescu, & Richard, 1999). Although efforts in stability analysis
are made mainly to derive necessary and sufficient conditions, the
interest in some sufficient conditions is due to two factors. First,
some sufficient conditions usually require much less computation
than typical necessary and sufficient ones. Second, many sufficient
conditions, especially those based on the Lyapunov stability theory
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(Boyd et al., 1994; Kolmanovskii et al., 1999), are easily adapted
to other more complicated problems of time-delay systems. In
fact, fruitful synthesis results on time-delay systems, whether
delay-independent (Boyd et al., 1994; Shi, Boukas, & Agarwal,
1999; Wang, Huang, & Unbehauen, 1999; Wu & Grigoriadis, 2001)
or delay-dependent (Du, Lam, & Shu, 2010; Fridman & Shaked,
2002; Gao & Li, 2011; He, Wu, She, & Liu, 2004; Li & Gao, 2011;
Lin, Wang, & Lee, 2006; Palhares, Campos, Ekel, Leles, & D’Angelo,
2005), can be regarded as applications or extensions of simple lin-
ear matrix inequality (LMI) conditions (Agathoklis & Foda, 1989;
Boyd et al., 1994).

In the paper, we will revisit the problem of strong delay-
independent stability analysis of linear time-invariant systems
with a state delay. Our attention will be focused on applying a
frequency-discretization idea to develop new stability criteria in
terms of linear matrix inequality (LMI). The advantage of the
proposed stability criteria lies in the fact that they give a series
of new sufficient conditions for systems with a single delay and
become nonconservative as the frequency-discretization number
goes to infinity, thus potentially less conservative than some
typical sufficient LMI conditions in the literature. Numerical results
will be provided to illustrate the improvement of the proposed
method.

Notation: The superscripts ‘‘−1’’, ‘‘T’’, ‘‘∗’’ and ‘‘⊥’’ stand for
inverse, transpose, conjugate transpose and null space of a matrix,
respectively. Rm×n (Cm×n) is the set of m × n real (complex)
matrices. C+ denotes the closed right half plane of the complex
plane, and D and ∂D denote the closed unit disc and the unit
circle on the complex plane, respectively. The notation P >
0 (≥ 0) means that matrix P is Hermitian positive definite
(semi-definite). Sn and Hn are the sets of n × n symmetric and
Hermitianmatrices, respectively. I denotes an identitymatrix with
appropriate dimension. For a square matrix A, sym {A} represents
(A∗

+ A) /2. For a square matrix A, α(A) and ρ(A) are the spectral
abscissa and spectral radius of A, respectively, λ(A) and σ(A)
are the eigenvalues and singular values of A, respectively. Matrix
dimensions are assumed to be compatible for algebraic operations.

2. Main results

In this section, we present new stability conditions for sys-
tems with a single delay. Section 2.1 formulates the problem
and provides some preliminaries. Section 2.2 comments some ex-
isting results for motivation. Technical details of the frequency-
discretization idea and stability conditions are presented in
Section 2.3, and numerical implementation of the stability condi-
tions is discussed in Section 2.4.

2.1. Problem statement and preliminaries

Consider a linear continuous time-invariant system with a sin-
gle delay described by the following delay-differential equation:
ẋ(t) = A0x(t) + A1x(t − d), (1)
where x(t) ∈ Rn is the state vector, A0 and A1 ∈ Rn×n are known
constant matrices, and d ≥ 0 is the delay. Define a bivariate poly-
nomial c(s, z) as
c(s, z) , det(sI − A0 − zA1).

For a given delay d, it is known (Hale, 1977) that the asymptotic
stability of system (1) is equivalent to

c(s, z) ≠ 0, ∀s ∈ C+ and z = e−ds. (2)
In this paper, we are interested in system (1) whose stability is
maintained for arbitrary delay d ≥ 0. Two related notions of
delay-independent stability for system (1) are defined as follows.

Definition 1. System (1) is said to be (weakly) delay-independen-
tly stable if the condition in (2) is satisfied for all d ≥ 0.

Definition 2. System (1) is said to be strongly delay-independently
stable if

c(s, z) ≠ 0, ∀(s, z) ∈ C+ × D. (3)

According to the definition, strong delay-independent stability
is defined by regarding s and z as independent of each other. As em-
phasized in Chen and Latchman (1995), strong delay-independent
stability is stricter than the weak version in terms of the require-
ment at s = 0, where z = 1 in c(s, z) can no longer be regarded
as a variable independent of s any more. However, the property
of weakly delay-independent stability is not robust against per-
turbations of parameters A0 and A1 (Bliman, 2002). In this paper,
wemainly consider strong delay-independent stability (but see Re-
mark 3).

It is difficult to test strong delay-independent stability of system
(1) directly according to its definition, because c(s, z) is a bivariate
polynomial. Define

S(s) , (sI − A0)
−1A1, Z(z) , A0 + zA1.

The condition in (3) can be simplified to overcome this difficulty.

Lemma 1. System (1) is strongly delay-independently stable if and
only if either one of the following two equivalent conditions holds.

(i)

ρ(S(s)) < 1, ∀ℜ(s) = 0 (4)

and

α(A0) < 0. (5)

(ii) α(Z(z)) < 0 for all z ∈ ∂D.

Condition (i) has been established in Agathoklis and Foda
(1989), and Chen and Latchman (1995); and condition (ii) can be
found in Agathoklis and Foda (1989), and Kamen (1982). In this
paper, they will be used to develop novel and tractable stability
criteria for system (1).

2.2. Observation and motivation

It has been well understood (Agathoklis & Foda, 1989; Boyd
et al., 1994) that condition (i) of Lemma 1 holds if the following
LMI holds for some P0 > 0 and P1 > 0:
AT
0P0 + P0A0 + P1 P0A1

AT
1P0 −P1


< 0, (6)

which is known as two-dimensional (2-D) Lyapunov inequality
(Agathoklis & Foda, 1989). This condition can be interpreted from
two different points of view. First, according to the continuous-
time bounded real lemma (Anderson & Vongpanitlerd, 1973), LMI
(6) holds if and only if

max
ℜ(s)=0

σmax(R1S(s)R−1
1 ) < 1; RT

1R1 = P1. (7)

In view of the relationships:

max
ℜ(s)=0

ρ(S(s)) = max
ℜ(s)=0

ρ

R1S(s)R−1

1


≤ max

ℜ(s)=0
σmax(R1S(s)R−1

1 ), (8)

it can be seen that (7), or equivalently (6), is stricter than condition
(i) in Lemma1. This frequency-domain interpretation can be found,
e.g., in Agathoklis and Foda (1989), Boyd et al. (1994) and Chen
et al. (1995). Second, (6) can also be established froma time-domain
point of view by using a simple Lyapunov–Krasovskii functional
(Boyd et al., 1994). Both interpretations endow the condition in
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