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a  b  s  t  r  a  c  t

The  Gauss-Newton  method  is  a  simple  iterative  gradient  descent  method  used  to modify  a  mathematical
model  by  minimising  the  least-squares  residuals  between  the  modelled  response,  and  some  observed
behaviour.  A  common  issue  for parameter  identification  methods  that  optimise  least-square  residuals  is
the  sporadic  occurrence  of  outlying  data  in  the  observation  data  set.

This research  proposes  an  amendment  to  the  Gauss-Newton  parameter  identification  approach  that
limits  the influence  of outlying  data  by dissipating  the  contribution  of  outlying  data  to  the  objective
function  that  drives  iterations.  The  modified  method  was tested  in two  and  three-dimensional  parameter
identification  exercises  using  virtual  data  from  the  dynamic  insulin  sensitivity  and  secretion  test (DISST).
The  data  incorporated  random  normally  distributed  noise  (CV  =  3%)  or random  normally  distributed  noise
in  concert  with  an  outlying  data  point. The  proposed  method  performed  similarly  to  the  original  method
when  no  outlying  data  was  included  and  found  the model  that fit  accurately  to  the  majority  of  data  points
when  an  outlying  data  point  was  present.

The proposed  approach  provides  a valuable  tool  for  the  rejection  of outlier  data  that  is  operator  inde-
pendent,  does  not  require  multiple  stages  of  analysis,  or manual  removal  of data.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Inverse problem methodologies can be used to quantify and
describe physiological phenomena by fitting specific candidate
models to observed behaviour [1,2]. The models are modified to
capture a particular subject’s observed response via the appro-
priate identification of key model parameter values. In particular,
parameter values are identified using methods that minimise the
difference between the responses simulated by the model and
observed behaviour [3]. Gradient descent methods are a family of
parameter identification methods that optimise the model param-
eters with respect to the model structure and the observed data.
These methods calculate the gradient in the model-observation dis-
agreement local to a particular parameter estimate, and iterate in
a direction of reducing error. The Gauss-Newton method is a rela-
tively simple gradient descent method from which many advanced
methods are derived [4].

The Gauss-Newton method is an iterative, non-linear gradi-
ent descent method for parameter identification in terms of least
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squares error. This method performs well for convex systems
with relatively identifiable models [5] and low levels of measure-
ment error. The Gauss Newton method forms the foundation of
the Levenberg-Marquardt algorithm [4,6,7], the Davidon-Fletcher-
Powell method [4,8], and the conjugate gradient approach [4,9].

An intrinsic problem parameter identification methods that
minimise squared residual error is the effect of outlier data mea-
surements on the objective surface [10]. In such cases, outlier data
can cause excessively large deviation from the behaviour described
by the majority of the data points. A frequently used methodology
is a-posteriori removal of data points that are greater than 3 stan-
dard deviations from the simulated response [11,12]. However, this
method is difficult to implement, particularly in cases wherein data
sets that contain sparse high accuracy measurements. The post-
process method implementation also leaves scope for operator
influence on the outcomes. Methods with reduced operator influ-
ence include Huber, Tukey and Cauchy adaptations to the objective
contributions [13,14].

This research presents an adaption of the Gauss Newton Method
that allows outlying measurements to be ignored within the identi-
fication method. Thus, statistical identification of outliers is not an
aspect of post-process and thus the process is operator indepen-
dent and quickly done. The adapted method has been tested in a
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well-conditioned two dimensional case, and a poorly-conditioned
three dimensional case. The method was compared to the original
method for each.

2. Methods

The adapted Gauss Newton method was tested on in-silico data
that represented a typical insulinaemic/glycemic response of a
healthy participant of the dynamic insulin sensitivity and secretion
test (DISST) [15–17].

2.1. The adapted Gauss-Newton parameter identification method

Gradient descent methods step iteratively towards the mini-
mum  by evaluating the direction of descending gradient. These
methods typically choose a step size in proportion to the mag-
nitude of the error. The algorithm for the Gauss-Newton method
converges from a particular initial parameter estimate by iterating
Eq. (1):

xi+1 = xi − (Ji
TJi)
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Ji

T�(xi) (1)

where x is the identified parameter set, i is the iteration number, �
is the vector of residual values, and (Ji) is the Jacobian matrix. The
values of Ji and � are defined:
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 k(xi) = G(xi, tk) − Gk (1b)

where there are j = 1. . .m model parameters to be optimised and
k=1. . .n data measurements, G(xi, tk) are exact model solutions for
G at time tk with parameters xi, GK is the observed data at times t = tk
are Gk:=Gt=tk . This method ultimately leads to an optimisation in
terms of least squares, and produces the objective surfaces shown
in Fig. 3:

xopt = argmin
x

∑
k

 2
k (2)

However, a single outlier can have a disproportionate effect on
the identified optimal parameter set. The alternative objective sur-
face formulation used in this analysis is intended to ignore the
contributions of outlier data. Fig. 1 and Eq. (3) show the original
least squares objective contribution and the contrasting shape used
in this analysis. The modified objective is given by:

�̂ =
[
 ̂k

]
=  k(x)e−˛| k(x)| (3)

The value of � can be adapted during the parameter identifi-
cation iterations to reduce the width of the peak ring about the
minima. This allows a wider ring at the beginning of the iterative
process and a tighter ring once the method begins to converge.
The median residual error

(
| |M

)
typically reduces during con-

vergence, and � is specified by Eq. (4) (with an additional tunable
parameter ˇ):

 ̨ = 1
ˇ|�|M

. (4)

Fig. 1. The objective surface contributions from Eq. (3) with  ̨ = 0.3.

Incorporating Eqs. (3) and (4) into Eq. (1) thus adapts the Gauss-
Newton algorithm:

xi+1 = xi − (Ji
TJi)

−1
Ji

T�̂ (5)

where : �̂ =
[
 ̂k

]
=  k(xi)e

− | k(xi)|
ˇ|�(xi)|M . (5a)

The typical � determined in Eq. (4) is used to find the Jacobian as
this determines the direction of the next step of the Gauss-Newton
method (i.e. J = f (�), J /= f (�̂)), this is in contrast to similar meth-
ods that address outlier data such as Cauchy, Huber, Tukey [13,14]).
The modulated �̂ is only used in the adapted Gauss-Newton algo-
rithm to determine how each residual error value contributes to
the magnitude of the step. This modified Gauss-Newton iteration
inherits the robustness properties and mathematical proof of the
typical Gauss-Newton least-squares, provided that the number of
inlier data points, meets or exceeds the number of identified param-
eters. This is a standard requirement of Gauss-Newton [18], and
mathematical proof of the typical Gauss-Newton method [18]. In
particular, if the proposed method determines that the kth data
point is an outlier, it will reduce, or effectively eliminate the kth

element of the �̂ vector and will thus ameliorate the contribution

of the kth column of
[

(Ji
TJi)

−1
Ji

T
]

A range of values for  ̌ were considered. It was determined via
inspection that the value of  ̌ was effectively equal to the number
of standard deviations of the error distribution between the peaks
of the error shape. An accepted statistical approach with regards
to the rejection of outlier data is to manually remove data that
falls more than three standard deviations away from the identified
model simulation. Hence, to ensure that data within three standard
deviations is captured by the adapted approach, a value of  ̌ = 3 was
used. This meant that assuming normal distribution, 99.7% of all
data points had significant contributions to the identified optima.
Fig. 2 shows the effect of  ̌ on the width of the objective contribu-
tion function, and the effect of the measurement precision on the
objective contribution function.

2.2. Construction and interpretation of the objective surface

The DISST test is a low dose, moderately sparsely sampled test
for insulin sensitivity (SI). The fasted participant receives a 10 g glu-
cose bolus at t = 6 min  and a 1U insulin bolus at t = 16 min. In this
application, glucose, insulin and C-peptide samples were taken at
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