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a b s t r a c t

In this note, an improved method of ultimate bound computation for a linear switched system under
arbitrary switching is presented. An ultimate bound for a linear switched system can be computed by
solving a class of linear matrix inequalities. The effectiveness of the obtained results is illustrated by
numerical examples.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of switched systems has attracted considerable
research attention in recent years (Blanchini, Casagrande, & Miani,
2010; Decarlo, Branicky, Pettersson, & Lennartson, 2000; Dehghan
& Ong, 2012; Liberzon & Morse, 1999; Lin & Antsaklis, 2009;
Shorten, Wirth, Mason, Wulff, & King, 2007). In some cases, the
asymptotic stability of switched systems cannot be ensured in the
presence of disturbances. Hence, it is useful to study a practical
stability problem for switched systems, such as an ultimate bound
for the state trajectories. Some sufficient conditions for practical
stability are provided in Haimovich and Seron (2010, 2013),
Kofman, Haimovich, and Seron (2007) and Kofman, Seron, and
Haimovich (2008), which rely on the existence of a transformation
matrix that takes all matrices of the switched linear system into
a form satisfying certain properties. In the literature (Blanchini
et al., 2010; Dehghan & Ong, 2012), invariant sets for switched
systems under dwell time switching are studied. These results
can be applied to arbitrary switching systems by letting the dwell
time be nearly zero. In this note, switched systems under arbitrary
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switching will be considered, which are given by

ẋ(t) = Aσ(t)x(t)+ Bσ(t)ω(t) (1)

where x(t) ∈ Rn is the system state, ω(t) ∈ Rp is an external
disturbance vector,

σ : R+ → {1, 2, . . . , s} (2)

is the switching function, Ar ∈ Rn×n, Br ∈ Rn×p, r ∈ [1, s]
are known constant matrices. The disturbance ω(t) =

[ω1(t) · · ·ωp(t)]T is unknown but assumed to be bounded by a
given constant vector ω̄ = [ω̄1 · · · ω̄p]

T
∈ Rp with ω̄i > 0,

i ∈ [1, p], i.e., for all t ≥ 0,

|ωi(t)| ≤ ω̄i, ∀i ∈ [1, p]. (3)

2. Preliminaries

In the following, for real symmetricmatrices X, Y , the notations
X ≥ 0 and Y > 0 mean that the matrix X is positive semi-
definite and the matrix Y is positive definite, respectively. For any
vectors x = [x1 · · · xn]T ∈ Rn and y = [y1 · · · yn]T ∈ Rn,
the notation x ≥ y means that xi − yi ≥ 0 for all i ∈ [1, n].
Given a ∈ C, Re(a) denotes the real part of a. Let 0n denote the
n-dimensional vector, whose elements are all 0. Let 0n×n denote a
n×n dimensional matrix, whose elements are all 0. Given a vector
x = [x1 · · · xn]T ∈ Cn, let xH denote the conjugate transpose of
the vector x, let x̃ = |x| denote a vector x̃ = [x̃1 · · · x̃n]T ∈ Rn,
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whose elements are defined as x̃i = |xi|, i ∈ [1, n]. Given a matrix
U = [uij] ∈ Cn×n, let UH denote the conjugate transpose of the
matrix U , let Ũ = |U| denote a matrix Ũ = [ũij] ∈ Rn×n, whose
elements are defined as ũij = |uij|, i, j ∈ [1, n]. Given matrices
U1 = [u1ij], . . . ,Us = [usij] ∈ Rn×n, let U = maxr∈[1,s]{Ur} denote
a matrix U = [uij] ∈ Rn×n, whose elements uij, i, j ∈ [1, n]
are defined as uij = maxr∈[1,s]{urij}, i, j ∈ [1, n]. Given vectors
x1 · · · xs ∈ Rn, xr = [xr1 · · · xrn]T, r ∈ [1, s], let x = maxr∈[1,s]{xr}
denote a vector x = [x1 · · · xn]T ∈ Rn, whose elements xi, i ∈ [1, n]
are defined as xi = maxr∈[1,s]{xri}, i ∈ [1, n]. Given a matrix
U = [uij] ∈ Cn×n, let Ū =M(U) denote amatrix Ū = [ūij] ∈ Rn×n,
whose elements are defined as follows:

ūij =


|uij|, if i ≠ j,
Re(uij), if i = j.

Lemma 1 (Haimovich and Seron, 2010). Given a system (1)–(3) and
an invertible matrix T = (M + jN) ∈ Cn×n, M,N ∈ Rn×n, if the
matrix Λ is Hurwitz, then it follows that

lim
t→∞

sup |T−1x(t)| ≤ ζ , (4)

where zr = maxω:|ω|≤ω̄ |T−1Brω|, z = maxr∈[1,s]{zr}, Λ =

maxr∈[1,s]{Λr}, ζ = [ζ1 · · · ζn]
T
∈ Rn, ζ = −Λ−1z and Λr =

[λrij] ∈ Rn×n is defined as Λr =M(T−1ArT ), r ∈ [1, s].

The algorithms to calculate a transform matrix T are proposed
in the paper Haimovich and Seron (2010, 2013). Then, the ultimate
bound for system (1)–(3) can be calculated, i.e.,

lim
t→∞

sup |x(t)| ≤ [x̄1 · · · x̄n]T, (5)

where x̄ = [x̄1 · · · x̄n]T ∈ Rn, x̄ = |T |ζ , ζ is defined as in Lemma 1.
It can been seen that (4) is equivalent to

lim
t→∞

sup |eTi T
−1x(t)| ≤ ζi ∀i ∈ [1, n], (6)

where ei ∈ Rn denotes a n-dimensional vector, whose ith element
is 1 and others are 0, ζi, i ∈ [1, n] are defined as in Lemma 1.
Without loss of generality, in the following, we assume that ζi > 0
and x̄i > 0, i ∈ [1, n].

The main purpose of this note is to obtain a small ultimate
bound for the system (1)–(3) based on the results of Lemma 1.

Lemma 2. Suppose that the state trajectories of system (1)–(3) sat-
isfy (4), where T ∈ Cn×n and ζ ∈ Rn are defined as in Lemma 1. For
the given matrices Qr ∈ Rn×n with Qr = Q T

r , Q̃r ∈ Rn×n, Ξr ∈ Rn×n,
Ξ̃r ∈ Rn×n, Gr = [grij] ∈ Rn×n, G̃r = [g̃rij] ∈ Rn×n, r ∈ [1, s], if

grij ≥ |frij| ∀i, j ∈ [1, n], r ∈ [1, s], (7)

g̃rij ≥ |f̃rij| ∀i, j ∈ [1, n], r ∈ [1, s] (8)

then it follows that

lim
t→∞

sup |xT(t)Qrx(t)| ≤ ζ TGrζ ∀r ∈ [1, s], (9)

lim
t→∞

sup |xT(t)Q̃rBrω(t)| ≤ ζ TG̃rzr ∀r ∈ [1, s], (10)

where Fr = [frij] ∈ Cn×n, F̃r = [f̃rij] ∈ Cn×n, Fr = TH(Qr + jΞr)T ,
F̃r = TH(Q̃r + jΞ̃r)T , r ∈ [1, s]. Also zr , r ∈ [1, s] are defined as
in Lemma 1.

Proof. It follows from x(t) ∈ Rn and ω(t) ∈ Rp that for all
r ∈ [1, s],

|xT(t)Q̃rBrω(t)| ≤ |xT(t)(Q̃r + jΞ̃r)Brω(t)|, (11)

|xT(t)Q̃rBrω(t)| ≤ |xT(t)(T−1)H| · |F̃r | · |T−1Brω(t)|. (12)

Then, using (8) and the definition of zr in Lemma 1, we obtain for
all r ∈ [1, s],

|xT(t)Q̃rBrω(t)| ≤ |xT(t)(T−1)H|G̃rzr . (13)

It follows from (4) that for all r ∈ [1, s],

lim
t→∞

sup |xT(t)(T−1)H|G̃rzr ≤ ζ TG̃rzr . (14)

Using (13) and (14), we can obtain (10). Similarly, we may obtain
(9). This completes the proof. �

3. Main results

Theorem 1. Suppose that the state trajectories of system (1)–(3) sat-
isfy (4), where T ∈ Cn×n and ζ ∈ Rn are defined as in Lemma 1.
For a given vector P = PR + jPI ∈ Cn with PR, PI ∈ Rn, if there
exist matrices Qr ∈ Rn×n, Q̃r ∈ Rn×n, Ξr ∈ Rn×n, Ξ̃r ∈ Rn×n,
Gr = [grij] ∈ Rn×n, G̃r = [g̃rij] ∈ Rn×n, r ∈ [1, s], diagonal ma-
trix Dr ∈ Rp×p with Dr ≥ 0, r ∈ [1, s] and scalars αr > 0, r ∈ [1, s],
β > 0 such that (7), (8),

Πr ≤ 0 ∀r ∈ [1, s], (15)
Γr < β ∀r ∈ [1, s], (16)

then, it follows that

lim
t→∞

sup |PHx(t)| ≤ β, (17)

where Fr = [frij] ∈ Cn×n, F̃r = [f̃rij] ∈ Cn×n, r ∈ [1, s] are defined as
in Lemma 2, P̃ = PRPT

R + PIPT
I , Γr = ω̄TDr ω̄ + ζ TGrζ + 2ζ TG̃rzr ,

Πr =


αr [AT

r P̃ + P̃Ar ] + β−1P̃ − Qr αr P̃Br − Q̃rBr

αrBT
r P̃ − BT

r Q̃
T
r −Dr


.

Proof. It follows from (16) that there exists a positive scalar ϵ such
that

Γr + 2ϵ < β ∀r ∈ [1, s]. (18)

Using (3) and the definition of Dr , we obtain that for all t ≥ 0,

ωT(t)Drω(t) ≤ ω̄TDr ω̄ ∀r ∈ [1, s]. (19)

Using (7), (8) and the results of Lemma2,we obtain (9) and (10).
It follows from (9), (10) and (19) that there exists a scalar tϵ < ∞
such that for all t ≥ tϵ ,

δr(t) ≤ Γr + ϵ ∀r ∈ [1, s], (20)

where δr(t) = ωT(t)Drω(t)+ xT(t)Qrx(t)+ 2xT(t)Q̃rBrω(t).
We construct the function V (x(t)) = xT(t)P̃x(t). Then, for the

system (1)–(3), it follows that

V̇ (x(t)) = (ασ(t))
−1

×[ξ T(t)Πσ(t)ξ(t)− xT(t)β−1P̃x(t)+ δσ(t)(t)], (21)

where ξ(t) = [xT(t) ωT(t)]T. It follows from (15) that ξ T(t)Πσ(t)
ξ(t) ≤ 0. Then, using (20), (21) and αr > 0, r ∈ [1, s], we can
obtain

V̇ (x(t)) ≤ (ασ(t))
−1
[β − ϵ − β−1V (x(t))] ∀t ≥ tϵ . (22)

In the following, we will show that there exists a scalar tβ such
that

V (x(t)) ≤ β2
∀t ≥ tβ . (23)

First, we will use the method of contradiction to prove that
there exists a scalar tβ with tϵ ≤ tβ <∞ such that V (x(tβ)) < β2.
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