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a b s t r a c t

For the stability analysis of time-delay systems, the available methods usually require the exact evalu-
ation of some quantities. The definite integral stability method, originated from the Argument Principle
or the Cauchy Theorem, is effective because it only requires a rough estimation of the testing integral
over a finite interval to judge stability. However, no general rule is given in the literature for properly
choosing the upper limit of the testing integral. In this paper, two simple algorithms are presented for
finding the parameter-dependent critical upper limit and a parameter-independent upper limit without
any restriction on the number of time delays. These results improve and complete the definite integral
stability method. As illustrated by the numerical examples, the proposed algorithms work effectively and
accurately.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delay systems are described by delay differential equa-
tions (DDEs) (Erneux, 2009;Michiels & Niculescu, 2007; Niculescu,
2001; Stepan, 1989). The present study is restricted to autonomous
Retarded DDEs (RDDEs) and Neutral DDEs (NDDEs) only. Time
delays come usually from controllers, filters, actuators, or the con-
tact problems of pure mechanical systems. In control applications,
we mention here the car following problem modeled by RDDEs,
where the delay is the human driver’s response time or the sig-
nal communication and processing time in autonomous vehicles
(Brackstone & McDonald, 1999; Campbell, Egerstedt, How, & Mur-
ray, 2010; Orosz, Wilson, & Stepan, 2010); NDDE is used in mod-
eling and reducing the sway of container cranes with a delayed
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controller (Masoud & Nayfeh, 2003; Nayfeh, Masoud, & Nayfeh,
2011; Zhang, Wang, & Hu, 2012). As an example for a pure me-
chanical system with delay originated in the contact of tool and
workpiece, RDDE is used to model the machine tool vibration of
the cutting process (Long & Balachandran, 2007; Stepan, 2001).

The possible negative effect of the delay on stability and
performance has been a key issue in engineering applications.
Lots of methods, criteria, or algorithms are available for the
stability analysis of DDEs (Erneux, 2009; Kuang, 1993; Michiels &
Niculescu, 2007; Niculescu, 2001; Olgac & Sipahi, 2002; Stepan,
1989). Lyapunov functionals and Lyapunov–Krasovskii functionals
have been used for stability analysis of DDEs applicable also for
global stability analysis (Gu, 2010; Gu & Liu, 2009; Niculescu,
2001). By rewriting the discrete-delay DDEs into distributed-delay
DDEs, Lyapunov–Krasovskii functionals provide sufficient stability
conditions of DDEs (Gu & Niculescu, 2000; Ivanescu, Niculescu,
Dugard, Dion, & Verriest, 2003; Niculescu, 1999).

In order to obtainmore dedicated results, methods based on the
analysis of characteristic functions are preferred. Among the first
ones is the Pontryagin method that goes back to 1942 (Pontryagin,
1942). The method of stability switch is effective in finding the
stable intervals for a given parameter (Kuang, 1993). A different
version of the stability switch method is based on introducing
Rekasius substitution, where the critical conditions can be studied
with polynomials (Olgac, 2004; Olgac & Sipahi, 2002; Sipahi &
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Olgac, 2006). Although the Nyquist criterion works effectively in
some applications (Fu, Olbrot, & Polis, 1989, 1991), theNyquist plot
may not be good in judging stability because it may intersect itself
in an intricate way, especially in case of oscillatory systems with
multiple delays (Abdallah, Dorato, Benites-Read, & Byrne, 1993).

The Argument Principle based stability criteria proposed and
developed in Hassard (1997), Kolmanovskii and Myshkis (1999),
Stepan (1989) and Xu and Wang (2014) enable one to calculate
analytically the number of characteristic roots in the right-half
complex plane (unstable roots, for short) for RDDEs and most of
NDDEs. To do this, Hassard (1997) and Stepan (1989) suggest the
calculation of all the finite number of roots with positive real
parts of a transcendental real function associatedwith the complex
characteristic function, instead of calculating the corresponding
improper integral. The definite integral method works effectively
for RDDEs (Kolmanovskii & Myshkis, 1999) by changing the
corresponding improper integral into a proper one, and it is proved
to be applicable also for most of NDDEs (Xu & Wang, 2014). A
special and useful feature of the definite integral method is that
it only requires a rough estimation of the testing integral. In this
way, it is of less complexity and its computational cost is low with
a properly chosen upper limit of the integral. However, no general
rules are given for estimating this upper limit.

This paper aims at proposing two general algorithms for
choosing such an upper limit. With these, the number of unstable
roots is calculated easily, so that the stability can be judged.
The rest of the paper is organized as follows. In Section 2, a
brief introduction of the stability criteria in definite integral form
is given for DDEs. Then in Section 3, the algorithm for finding
the critical upper limit of the definite integral is presented and
illustrated with an example. In Section 4, the proposed algorithm
is generalized to parameter-independent stability tests, and it is
used to plot stability charts of NDDEs in an example with multiple
delays. Finally in Section 5, some concluding remarks are drawn.

2. Problem statement

Let us consider a linear time-delay system described by

ẋ(t) +

m
i=1

Niẋ(t − τi) = Ax(t) +

m
i=1

Bix(t − τi) (1)

where x ∈ Rn, A, Bi, Ni ∈ Rn×n. The characteristic function of Eq.
(1) is given in the form

f (λ) = λn
+

n
i=0

αi(e−λτ1 , . . . , e−λτm)λn−i (2)

where αi(z1, . . . , zm), i = 0, 1, . . . , n are real polynomials with
respect to z1 = e−λτ1 , . . . , zm = e−λτm . Eq. (1) is a RDDE when
Nk = 0 for all k = 1, 2, . . . ,m, that is, α0(z1, . . . , zm) ≡ 0, while it
is a NDDE when at least one Nk ≠ 0 for some k = 1, 2, . . . ,m, that
is,α0(z1, . . . , zm) ≠ 0. A trivial solution of a RDDE is asymptotically
stable in Lyapunov sense if and only if all the characteristic roots
stay in the open left half of the complex plane (Kuang, 1993). For
a NDDE, further condition is needed that these roots are uniformly
bounded away from the imaginary axis, because they may have
accumulation points on the imaginary axis (Kuang, 1993).

Assume that f (λ) has no roots on the imaginary axis. Let N be
the number of all the unstable characteristic roots of Eq. (2) located
in the right half complex plane, and let ∆C denote the argument
change over the contour C shown in Fig. 1, which consists of
{C1 : λ = Reθ i

| θ ∈ (−π/2, π/2)} and {C2 : λ = ω i| ω ∈

(−R, R)}. Then the Argument Principle or Cauchy Theorem gives

N = lim
R→+∞

∆C arg(f (λ))

2π
= lim

R→+∞

1
2π i


C

f ′(λ)

f (λ)
dλ. (3)

Fig. 1. The contour C of the line integral in Eq. (3).

Let ℜ(z) denote the real part of complex number z, and define a
testing integral F(T1, T2) as

F(T1, T2)
def
=

 T2

T1
ℜ


f ′(ω i)
f (ω i)


dω. (4)

For a RDDE, Eq. (3) leads to Kolmanovskii and Myshkis (1999)

N =
n
2

−
1
π

lim
T→+∞

F(0, T ). (5)

Hence simplified from Eq. (5) using a definite integral, N = 0 if
and only if there is a sufficient large T > 0 such that F(0, T ) >
(n − 1)π/2, see Kolmanovskii and Myshkis (1999).

For a NDDE, the limit in (5) does not converge. However, under
the following assumption (Hale & Lunel, 2002)

sup
ℜ(λ)>0, |λ|→∞

α0(e−λτ1 , . . . , e−λτm)
 < 1, (6)

a lemma is derived in Xu and Wang (2014) from Eq. (3):

Lemma 1. Assume that f (λ) has no roots on the imaginary axis, and
condition (6) holds, then there exists a sufficiently large T0 > 0, such
that for all T ≥ T0

N ∈


−

F(0, T )

π
+

n − 1
2

, −
F(0, T )

π
+

n + 1
2


. (7)

Because the length of the interval given in (7) is less than 1,
the exact number N can be located in the interval (7) using an
arbitrary T that is slightly larger than T0. With the use of standard
mathematical softwares, N can be calculated simply by using the
round off command

N = round

n
2

−
F(0, T )

π


. (8)

When N = 0, system (1) is asymptotically stable. Thus, under
assumption (6), the key issue for the stability analysis is to develop
some effective algorithms for finding an upper limit T in the testing
integral F(0, T ).

3. Parameter-dependent critical upper limit

This section is devoted to finding a critical upper limit T0 of the
testing integral, with which Eq. (8) gives the correct integer N for
any T > T0. The key idea is to introduce two real functions by using
the real and imaginary parts of i−nf (ω i), given by

R(ω) + S(ω) i = i−nf (ω i). (9)
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