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a  b  s  t  r  a  c  t

A  multimodal  medical  image  fusion  method  based  on discrete  fractional  wavelet  (DFRWT)  is presented  in
this  paper.  With  a change  in  p order  in  domain  (0,1],  source  medical  images  are  decomposed  by DFRWT  in
different  p  order.  The  sparsity  character  of the  mode  coefficients  in subband  images  changes.  According  to
the  method,  to enhance  the  correlation  between  subband  coefficients,  the non-sparsity  character  of  the
mode  coefficients  in  low  p order  should  be utilized.  The  coefficients  of  the  all subbands  are  fused  using  the
weighted  regional  variance  rule.  Finally,  inverse  DFRWT  is applied  to obtain  a fused  image.  Subjective  and
objective  analyses  of the  results  and  comparisons  with  other  multiresolution  domain  techniques  show
the effectiveness  of  the proposed  scheme  in  fusing  multimodal  medical  images.

©  2016  Published  by  Elsevier  Ltd.

1. Introduction

Medical images in different modality display different char-
acteristic information of human viscera and diseased tissue.
Anatomical images, such as computerized tomography (CT) and
magnetic resonance imaging (MRI), provide high-resolution human
anatomical information but do not reflect the function of organ
metabolic information. Functional medical images such as positron
emission tomography (PET) provide functional information on
organ metabolism and blood flow but do not provide the focus
positional information because these images are of low spatial res-
olution [1,2]. Therefore, studying how complementary information
from different modalities can be combined to obtain more useful
information through image fusion has important significance for
clinical use.

Image fusion can be performed in three different levels [3,4],
i.e., from low to high: pixel level, feature level, and decision level.
Pixel-level image fusion is the primary method, and its special
features are its large amount of information and high precision. At
present, pixel-level image fusion is the main method in medical
fusion research [5]. In the past decades, people have proposed
many pixel-level approaches, such as intensity–hue–saturation
(IHS) [6], principal component analysis (PCA) [7], and
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multiresolution-analysis-based methods [8]. Among these meth-
ods, the most widely used methods are multiresolution analysis
(MRA) techniques such as Laplacian pyramid (LP) and discrete
wavelet transform (DWT) [9–11] because of the influence of
spectral degradation in IHS and PCA. In the LP method, each
pyramid level generates only one bandpass image, and the method
fails to introduce any spatial orientation selectivity in the decom-
position process and, hence, often causes blocking effects. The
DWT  has good time–frequency localization characteristics and
multiresolution characteristic, and it can offer the information
in horizontal, vertical, and diagonal directions and low-pass
components. However, the result of the DWT  fusion method has a
pseudo-Gibbs effect because of the down-sampling process at each
DWT  decomposition stage. To overcome the limitations of the
lack directionality of the DWT  methods, curvelets are considered
an effective model in capturing curvilinear properties [12], such
as lines and edges. Contourlet transform is derived from the
anisotropic scaling relations of curvelet transform, which, in a
certain sense, is a form of application of the curvelet transform
[13]. The contourlet transform can provide a multiscale and
directional decomposition of images, which is more suitable for
catching complex contours, edges, and textures. Because of the
down-sampling process in the coefficient decomposition step,
the contourlet and, curvelet transforms are shift variant, and
the image fusion quality is affected by it. The nonsubsampled
contourlet transform (NSCT) [14,15] is a shift-invariant version of
the contourlet transform, which uses nonsubsampled pyramids
(NSPs) and nonsubsampled directional filter banks (NSDFBs) to
decompose source images in a multidirectional way, and provides
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an effective way to obtain a more accurate analysis of multimodal-
ity images. Because transform coefficients of the NSCT in each
subband are same as the original image size, its redundancy results
in increase in computational complexity and longer fusion time.

In recent years, a novel time–frequency analysis theory, namely
fractional wavelet transform (FRWT) [16,17], has been proposed,
and the fractional wavelet transform has extended the analysis
method of wavelet transform from the time–frequency domain
to time–fractional-frequency domain. The time–frequency analysis
theory can characterize signal features in time and fractional-
frequency domain [18]. The FRWT is more flexible for image
processing and provides a new approach to image fusion because
of fractional frequency, which is a new concept.

To solve the aforementioned problems, we present a new mul-
timodal medical image fusion method using discrete fractional
wavelet (DFRWT), which is based on a multiresolution principle
in low p order [19,20]. The DFRWT performs multilevel fusion
over two sets of multimodal medical images using a self-adaptive
weighted scheme. The proposed fusion method is compared with
other multiresolution methods such as LP, DWT, curvelet and con-
tourlet transforms, and NSCT. The superiority of the proposed
fusion method is validated through subjective vision and objective
fusion metrics for medical image fusion.

The rest of this paper is organized as follows. In the next sec-
tion, we explain the concept of the FRWT and how the DFRWT is
realized. Section 2 provides the analysis of the histogram distribu-
tion form and sparsity of subband mode coefficients in different
p orders under a 2-D DFRWT. Section 3 describes an image fusion
algorithm based on the DFRWT. Section 4 gives the experimental
results and evaluates the performance of various methods. Conclu-
sions are summarized at the end of this paper.

2. Preliminaries

2.1. Definition of the fractional wavelet transform

The FRWT was first introduced by Shijun in 2012 as a gener-
alization of the wavelet transform. The FRWT was derived from
fractional convolution [16,17,21]. The pth-order continuous FRWT
can be defined as
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kernel of the fractional wavelet. In  ̨ = p�/2, p denotes the order of
the fractional Fourier transform (FRFT), and � indicates the rotation
angle of the transformed signal for the FRFT. For p ∈ (0, 1], kernel
 a,b (t) is a continuous affine transformation of mother wavelet
 (t), where a is called the scaling parameter and b is a transla-
tion parameter, which determines the time location of the wavelet.
Note that when p = 1, the FRWT coincides with the WT.  In literature
[16,17] each fractional wavelet component is essentially a differ-
ently scaled bandpass filter in the fractional Fourier domain. The
analysis of the signal equivalent to multiresolution analysis (MRA)

process in the time–fractional domain plane and a novel signal
processing tool has time–fractional frequency domain localization
characteristics.

To establish a relationship between the FRWT and the MRA, lit-
erature [17] has given the definition of the MRA  concept of the
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Literature [19] analyzed conditions of the construction
orthonormal basis of fractional wavelet in time and fractional
domains and gave a new transitive relation on adjacent scales space
function �p;j,k(t),  p;j,k(t),  p;j−1,k(t). If function spaces V˛
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2.2. Algorithm of the discrete fractional wavelet transform

Specific derivation of the implementation procedure on the
DFRWT coefficient decomposition and reconstruction was proposed
in literature [19]. Fig. 1 shows the flowchart of the coefficient
decomposition of one layer of the DFRWT. Discrete sequences{
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are the j-th layer coefficients in the decomposition of a con-
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and detail coefficient
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in the fractional wavelet domain in the (j + 1)-th layer. The obtained
values are complex. The decomposition into approximations and

Fig. 1. The flow chart of coefficient decomposition of one layer DFRWT.
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