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a  b  s  t  r  a  c  t

In this  paper,  we  present  a novel  framework  for parcellation  of  a brain  region  into  functional  subROIs
(Sub-Region-of-Interest)  based  on their  connectivity  patterns  with  other  brain  regions.  By  utilising  previ-
ously  established  neuroanatomy  information,  the  proposed  method  aims  at finding  spatially  continuous,
functionally  consistent  subROIs  in  a given  brain  region.  The proposed  framework  relies  on (1)  a sparse
spatially-regularized  fused  lasso  regression  model  for  encouraging  spatially  and  functionally  adjacent
voxels  to share  similar  regression  coefficients;  (2)  an  iterative  merging  and  adaptive  parameter  tuning
process;  (3) a Graph-Cut  optimization  algorithm  for  assigning  overlapped  voxels  into  separate  subROIs.
Our  simulation  results  demonstrate  that the  proposed  method  could  reliably  yield  spatially  continuous
and  functionally  consistent  subROIs.  We  applied  the  method  to  resting-state  fMRI  data  obtained  from
normal  subjects  and  explored  connectivity  to the  putamen.  Two  distinct  functional  subROIs  could  be
parcellated  out  in  the  putamen  region  in  all subjects.  This  approach  provides  a way  to extract  functional
subROIs  that  can then  be  investigated  for alterations  in  connectivity  in  diseases  of  the  basal  ganglia,  for
example  in  Parkinson’s  disease.

©  2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Functional magnetic resonance imaging (fMRI) is a functional
neuroimaging technique that indirectly measures brain activity
by detecting associated alterations in blood oxygenation (BOLD
signal). In the past, most fMRI studies focused on detection of
localized neural activities by modeling the relationship between
fMRI signals and experiment stimulus, i.e., activity studies [1–3].
However, the human brain relies on efficient networks of interac-
ting brain regions [4]. Hence, interests in studying the associations
between brain regions have grown, i.e., connectivity studies [5–7].
Connectivity studies can be explored using task-related as well as
resting state fMRI data, with the latter looking at spontaneous inter-
actions between different brain regions without requiring active
engagement from the subject. Resting state fMRI may  therefore be
more suitable for studies involving aging and diseased populations
[8] who oftentimes suffer from sensory, motor and/or cognitive
impairments rendering them incapable of performing challenging
tasks.
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Connectivity studies can be conducted at either the voxel or ROI
(regions-of-interest) level. Voxel-based approaches usually involve
a large number of variables, are computationally-inefficient, and
must account for the massive amount of multiple comparisons.
Such voxel-based approaches are typically done by spatially trans-
forming all brain volumes to the same anatomical template.
However, subtle misregistration can make the assumption that,
after registration, a given voxel will represent the same functional
region across all subjects tenuous. ROI-based connectivity anal-
ysis may reduce the number of multiple comparisons, and does
not necessarily require spatial transformation, but requires careful
consideration as to the definition of an ROI. Anatomical ROIs may
be used to infer functional ROIs [9], but a single anatomical ROI,
such as the putamen or amygdala, may  in fact encompass distinct
functional subROIs [10]. A number of attempts have been made to
utilize data-driven approaches to subdivide a given ROIs into sub-
ROIs based on functional connectivity. One broad approach is based
on cluster analysis [11] which first retrieves connectivity features
of each voxel within an ROI using general linear regression mod-
els or Pearson’s pairwise correlation coefficients, and then applies
clustering according to the functional distances defined by the
extracted features. Various clustering methods have been adopted
in previous studies, such as the fuzzy clustering method [11],
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k-means clustering method [12], a self-organized mapping method
[10] and maximum margin clustering method [13]. However, in
order to acquire spatially continuous results, most clustering meth-
ods require meticulous denoising preprocessing methods as they
are very sensitive to outliers in the data. Another popular category
of data-driven approaches is based on graph theory, where each
voxel represents one node in the graph, and methods such as the
normalized cut approach [14] and modularity detection method
[15] are used to separate the graph (and hence ROI) into distinct
subROIs. Similar to clustering methods, graph theory methods do
not take into account spatial information, and thus it is often dif-
ficult to obtain spatially continuous subROIs using graph theory
methods. Furthermore, most graph theory methods are only con-
cerned with the connectivity map  between voxels within an ROI
without incorporating connectivity from other ROIs, which might
limit their usefulness.

In this paper, we propose a novel framework which defines sub-
ROIs in one ROI based on their functional connectivity to other ROIs.
The proposed method employs a fused lasso regression model [16]
with a spatial regularization penalty incorporated. The fused lasso
approach encourages sparsity of the regression coefficients as well
as sparsity of their successive differences between coefficients. We
further introduce the normal lasso penalty for all voxels and the
fused lasso penalty on spatially adjacent pairs of voxels.

Our framework differentiates from other approaches in the
literature [11–15] in two main aspects. Firstly, in our proposed
framework, we utilize the functional connectivity between vox-
els in the task ROI and the average time series of other related
ROIs (where the task ROI and the related ROIs belong to one neu-
ral control loop). In the literature [11,14,15], people only consider
the functional connectivity between voxels within the task ROI.
Secondly, we incorporate spatial information that is often ignored
in the literature [11,14,15] into our problem formulation. In addi-
tion, in order to limit the amount of bias that spatial constraint
could introduce, we proposed a novel algorithm for adaptive, data-
dependent parameter selection which allows us to only add spatial
constraint when it is ‘necessary’.

Functionally, in the basal ganglia–cortical loops in animals, the
putamen is connected to several cortices with a clear topography
[18]. We  have chosen three reference brain regions namely the
orbitofrontal (OF) cortex, cingulate gyrus (CG) and sensorimotor
cortex (SMA) to assess connectivity to the ROI of interest, the puta-
men. Specifically, the DLS is more strongly connected to the SMA
while the DMS has more reciprocal connections with the OF and
CG [19] [18]. However, the spatial boundary between the DLS and
the DMS  is blurry and their exact locations are unknown due to
overlapped connections; Some voxels of the DMS  also have weak
connections with the SMA  while the DLS, too, may  receive weak
connections from the CG and OF. This scenario is illustrated in
Fig. 1. In addition, as we observed in real fMRI data, due to the
spatial signal noise, head movement and other possible artifacts,
the data could be spatially corrupted with some outlier voxels. As
a result, many current parcellation methods are not able to deal
with such corrupted voxels to obtain a spatially continuous parcel-
lation. Therefore, we plan to design an algorithm to parcellate the
putamen region not only according to functional connectivity fea-
tures from prior knowledge but also through integration of spatial
information.

This pilot study aimed to investigate a novel technique to par-
cellate the putamen into two subregions with distinct functional
and structural connections to the cortices of the brain. The puta-
men  and caudate are two structurally distinct brain regions in
the brainstem with the former lying more laterally and inferior
to the latter. Due to the proximity of these two  brain regions
to each other and their shared neuronal connections, together,
they are known as the striatum. Within the striatum (caudate

Fig. 1. Illustration of functional subROIs in the putamen brain region. The figure is
made according to the graph shown in [18].

and putamen), it has spatially segregated functional topography.
The dorsolateral striatum (DLS) consists of the dorsal and lateral
aspects of the caudate and putamen, and is associated with con-
trol of habitual, automatic movements. On the other hand, more
medial areas within the caudate and putamen are known as the
dorsomedial striatum (DMS) and this region is functionally related
to learning and execution of goal-oriented movements. As an
exploratory first step, in this paper, we chose to parcellate the
putamen into the DLS and DMS  subregions.

In the remainder of the paper, we will present the proposed
method in Section 2. In Section 3.1, we  investigated on a syn-
thetic dataset to compare the results of the proposed method
with those of clustering and graph theory methods. We  tested
the proposed method on real resting state fMRI dataset in Section
3.2. In Section 4, we presented a summary of our results with a
conclusion.

2. Method

In this section, we  will describe the proposed framework to
separate a given ROI into functionally consistent and spatially con-
tinuous subROIs. We  define the ROI to be separated as the task
ROI and other ROIs used to estimate the connections with the task
ROI as reference ROIs. We  intended to find subsets of adjacent
voxels (i.e., subROIs) in the task ROI that share similar connectiv-
ity patterns to other reference ROIs and iteratively merge them
into groups. In the proposed algorithm, according to prior neu-
roanatomical knowledge, there are several reference ROIs that
share similar connectivity patterns with one functional subROI in
the task ROI (putamen in this paper) so that we can obtain the
functional boundary between these subROIs.

The proposed framework can be summarized in Table 1. We
will now elaborate on the individual components of the proposed
framework in the following subsections. First, we start by describ-
ing the spatially regularized fused lasso model.

2.1. Spatially regularized fused lasso method

Let X = [x1, x2, . . .,  xn] be a (T × n)-dimensional data matrix with
n denoting the number of voxels and T denoting the length of time
points. X represents the fMRI signals in the task ROI and xi, i = 1, 2,
. . .,  n represents fMRI time course of voxel i. Y is a (T × 1) vector
representing the signals of one reference ROI  which is acquired by
averaging time courses across all voxels contained in that reference
ROI. Let  ̌ be a (n × 1) vector where each element in  ̌ represents
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