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a  b  s  t  r  a  c  t

Robust  and  sparse  modeling  are  two  important  issues  in brain–computer  interface  systems.  L1-norm-
based  common  spatial  patterns  (CSP-L1)  method  is  a recently  developed  technique  that  seeks  robust
spatial  filters  by  using  L1-norm-based  dispersions.  However,  the spatial  filters  obtained  are  still dense,
and  thus  lack  interpretability.  This  paper  presents  a regularized  version  of  CSP-L1  with  sparsity,  termed
as  sp-CSPL1.  It  produces  sparse  spatial  filters,  which  eliminate  redundant  channels  and  retain  meaningful
EEG  signals.  The  sparsity  is  induced  by penalizing  the  objective  function  of  CSP-L1  with  the  L1-norm.  The
sp-CSPL1  approach  uses  the L1-norm  twice  for  inducing  sparsity  and  defining  dispersions  simultaneously.
The  presented  sp-CSPL1  algorithm  is evaluated  on two  publicly  available  EEG  data  sets,  on  which  it  shows
significant  improvement  in  classification  accuracy.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In recent years, electroencephalogram (EEG)-based brain com-
puter interfaces (BCI) have drawn progressively attention of
researchers due to its non-invasiveness and high temporal reso-
lution [1]. One core issue in BCI is to perform robust and accurate
classification of EEG signals recorded under different mental states
[2,3].

For the purpose of mental states classification, spatial filtering
is an effective technique for extracting useful discriminative fea-
tures [4]. The way of common spatial patterns (CSP) [5] is one of
the most widely used spatial filtering approaches in the field of
BCI. For two classes of EEG signals under different mental states,
CSP finds the optimal few directions that project EEG signals onto
a subspace where the variances of projected signals from one class
are maximized meanwhile the other class minimized. While CSP
has been proven to be effective for feature extraction, its sen-
sitiveness to noise and/or outlier is still an intractable problem.
Accordingly, the robust modeling of CSP has been studied in the
last few years [4,6,7]. Particularly, Samek et al. [8,9] unify many
CSP variants in a framework based on divergences, in which the
problem of robust modeling of CSP is considered. Roijendijk et al.
[10] present an alternative formulation of CSP. Recently, a robust
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method, named L1-norm-based CSP (CSP-L1) [11], was developed.
The CSP-L1 technique models EEG signals using the L1-norm dis-
persions rather than the conventional L2-norm so as to suppress
bad effects caused by outliers. It was demonstrated that CSP-L1 has
prospective classification performance for robust modeling [11].
CSP is also formulated by using the L1-norm technique, instead of
the L2-norm, in performing the eigen-decomposition for estimat-
ing spatial filters (L1-SVD-CSP) [12].

The neurophysiological study suggests that, when people are
performing cognitive or motor imaginary tasks, only several task-
specific areas of their cerebral cortex rather than the whole cerebral
cortex are activated [13]. It is thus beneficial to obtain meaning-
ful signals from these spatially separated regions for classification.
However, the spatial filters induced by CSP-L1, as well as L1-SVD-
CSP, are still dense. That is, the entries of the spatial filters, which
are used as weighs, are typically many non-zeroes. A variation of
signals from any channels may  result in a variation of the extracted
features, since the features are weighted combinations of signals
from all channels. Besides, there may  be redundant channels, which
make little contribution to the classification of specific mental
states and even deteriorate the classification performance due to
the artifacts and/or noise collected by these channels.

In this paper, motivated by the lasso-based sparsity modeling
[14], we plug an L1-norm regularization term into the original CSP-
L1 criterion so as to seek sparse spatial filters. We  term the proposed
method as sparse CSP-L1 (sp-CSPL1). We  point it out that the L1-
norm is employed twice in the objective function of sp-CSPL1. One
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is used as the penalty term to induce sparsity, and the other is used
to define sample dispersions for robust modeling (which is inher-
ited from CSP-L1). Accordingly, different from the existing sparse
versions of CSP [15,16] and the channel selection in CSP via solving a
series of quadratic problems [17], sp-CSPL1 yields sparse and robust
filters by optimizing one single objective function. The optimization
for the objective function of sp-CSPL1 with the sparsity-inducing
penalty and the robust dispersions by the L1-norms is not straight-
forward due to the non-differentiability of the L1-norm. We  thus
design an iterative algorithm to tackle the optimization problem of
sp-CSPL1. It is well known that the L1-norm is widely used for spar-
sity [18,19] and robust modeling [20–22] individually in the fields
of computer vision and signal processing. Especially for individual
sparsity modeling, a general framework underlying optimization
tools and techniques, called as variational lower bound, is pre-
sented by Bach et al. [23]. The sparsity optimization is also casted
as an iteratively reweighted least squares (IRWLS) problem [24].
Different from the individual sparsity modeling or the individual
robust modeling, in this paper, we use the L1-norm for simultane-
ous sparsity and robust modeling in one objective function.

The remainder of this paper is organized as follows. In Section
2, the conventional CSP and CSP-L1 are briefly reviewed. The pro-
posed sp-CSPL1 method and its efficient iterative algorithm are
introduced in Section 3. Section 4 presents experimental results
on two EEG data sets. Finally, we conclude this paper in Section 5.

2. Brief review of CSP and CSP-L1

Both the conventional CSP approach and its robust version CSP-
L1 are applied to a two-class paradigm. They find the best few pairs
of filters to optimize the quotient of the two classes of filtered EEG
signals. Let Xl = (xl

1, xl
2, . . .,  xl

S) ∈ RC×S (l = 1, 2, . . .,  tx) be the lth
EEG trial from one class and Yr = (yr

1, yr
2, . . .,  yr

S) ∈ RC×S (r = 1, 2,
. . .,  ty) the rth trial from the other class, where tx and ty are the
numbers of trials of the two classes, C is the number of channels,
and S is the number of samples in a single EEG trial. To simplify
the symbolic representation, let X = (X1, X2, . . .,  Xtx ) = (x1, x2, . . .,
xm) ∈ RC×m and Y = (Y1, Y2, . . .,  Yty ) = (y1, y2, . . .,  yn) ∈ RC×n denote
the concatenated EEG measurements of all the trials from the two
classes. Here m = tx× S and n = ty× S. We  assume that all the trials
have already been band-pass filtered, centered and scaled.

2.1. CSP

The CSP objective function is given by

JCSP(ω) = ωT Cxω

ωT Cyω
(1)

where Cx and Cy are the average covariance matrices of the two
classes. Thus, the objective function can be further formulated as

JCSP(ω) = ‖ω
T X‖22/tx

‖ωT Y‖22/ty
(2)

where ‖ · ‖ 2 denotes the L2-norm. The spatial filters ω can be deter-
mined by solving the generalized eigenvalue equation

Cx = �Cyω (3)

Specifically, the few eigenvectors from both end of the eigen-
value spectrum are chosen to comprise a filter matrix. The
log-transformed variances of the filtered signals from the two
classes are used as features for classification.

2.2. CSP-L1

The CSP-L1 approach modifies the objective function of CSP by
replacing the conventional L2-norm with the L1-norm in the dis-
persion formulation, which results in the objective function

JCSP-L1(ω) = ‖ω
T X‖1/tx

‖ωT Y‖1/ty
=

∑m
i=1|ωT xi|/tx∑n
j=1|ωT yj|/ty

(4)

where ‖ · ‖ 1 indicates the L1-norm. The computational issue of CSP-
L1 is solved by an iterative algorithm [11].

3. Sparse CSP-L1

In the process of calculating the spatial filters by CSP-L1, all
the channels are equally considered. The entries of the CSP-L1 fil-
ters, which measure the importance of corresponding channels,
are usually not zeroes. However, for a specific cognitive task, not
all encephalic regions are involved. It is beneficial to eliminate
redundant channels in the filtering process. In other words, it is
expected to achieve sparse spatial filters. Note that volume con-
duction means that a single compact source will propagate to all
electrodes unequally. However, in some cases the signal-to-noise
will be such that it’s not worth being used.

3.1. Objective function and iterative algorithm

We commence inducing sparsity via a lasso-based penalty,
which limits the L1-norm length of ω to a relatively small value.
This is implemented by optimizing the objective function of CSP-L1
with an inequality constraint ‖ω‖1 < �. Mathematically, we  pro-
pose maximizing the objective function

Jsp-CSPL1(ω) =
∑m

i=1|ωT xi|/tx∑n
j=1|ωT yj|/ty

− �‖ω‖1 (5)

where � is a positive parameter that controls the sparsity of the
resulting filters. Another paired filter is obtained analogously by
maximize the dual form of (5) where the two classes of signals are
swapped. For concise expression, in the following part, we assume
that xi and yj have already been normalized as xi/tx and yj← yj/ty

respectively.
We term the proposed method as sparse CSP-L1 (sp-CSPL1).

Clearly, the objective function of sp-CSPL1 involves the L1-norm
twice. One is used as the penalty term to induce sparsity, and the
other is used to define the sample dispersions for robust model-
ing. Specifically, the first term in the right hand of (5) involves
the sum of the absolute values of filtered samples (i.e., L1-nrom),
the robustness of which is demonstrated by Wang et al. [11]. The
second term is the penalty term based on the L1-norm, which is
the lasso expression and thus induces sparsity [14]. The compu-
tational problem of sp-CSPL1, nevertheless, is not straightforward.
Inspired by recent researches on the L1-norm-based optimization
problem [11,22,25], we propose an iterative algorithm of maximiz-
ing Jsp-CSPL1(ω)  in Table 1. The maximization of the dual form of
Jsp-CSPL1(ω) is likewise implemented by exchanging the positions
of X and Y.

The computational complexity of the iterative algorithm is
O((m + n)c) in each iteration.

3.2. Algorithm validation

It will be justified that the objective function of sp-CSPL1
would be increased monotonously through the iterative procedure
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