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a b s t r a c t

Control by dissipation, or environment engineering, constitutes an important methodology within quan-
tum coherent control which was proposed to improve the robustness and scalability of quantum control
systems. The system–environment coupling, often considered to be detrimental to quantum coherence,
also provides themeans to steer the system to desired states. This paper aims to develop the theory for en-
gineering of the dissipation, based on a ground-state Lyapunov stability analysis of open quantum systems
via a Heisenberg-picture approach. In particular, Lyapunov stability conditions expressed as operator in-
equalities allow a purely algebraic treatment of the environment engineering problem, which facilitates
the integration of quantum components into a large-scale quantum system and draws an explicit con-
nection to the classical theory of vector Lyapunov functions and decomposition–aggregationmethods for
control of complex systems. This leads to tractable algebraic conditions concerning the ground-state sta-
bility and scalability of quantumsystems. The implications of the results in relation to dissipative quantum
computing and state engineering are also discussed in this paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Control of quantum systems lies at the core of the quantum
technology (Altafini & Ticozzi, 2012; Dong & Petersen, 2010;Wise-
man & Milburn, 2009), while stability analysis provides the ap-
propriate tool for the systematic development of quantum control
theory. The stability analysis has been used in several quan-
tum control synthesis problems (James, Nurdin, & Petersen, 2008;
Maalouf & Petersen, 2011; Mirrahimi & Van Handel, 2007; Pe-
tersen, Ugrinovskii, & James, 2012; Qi, Pan, &Guo, 2013; Zhang, Liu,
Wu, Jacobs, & Nori, 2014). The applications include measurement-
based feedback control and coherent control for the generation of
quantum states as well as the regulation of system performance.
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Among all the methods for stability analysis, the Lyapunov stabil-
ity approach is the most fundamental, as the energy of a quantum
system is well-defined for most of the physical systems and a Lya-
punov function can be easily constructed (Amini et al., 2013; Kuang
& Cong, 2008; Sayrin et al., 2012; Ticozzi, Lucchese, Cappellaro,
& Viola, 2012; Wang & Schirmer, 2010). In particular, as we will
demonstrate in this paper, the Lyapunovmethod provides ameans
for engineering the dissipation to be used as coherent control.

Quantum computing often involves the execution of a sequence
of unitary operations on quantum systems. However, the severe
decoherence associated with the quantum systems presents a ma-
jor obstacle to the scalability of this approach. For this reason,
methods for robust realization of unitary operations are currently
under discussion. The possible plans include topological quantum
computing, adiabatic quantum computing and dissipative quan-
tum computing. Among these schemes, the adiabatic quantum
computing and dissipative quantum computing have direct rele-
vance to the stability of quantum systems. For example, in dissi-
pative quantum computing and state engineering, dissipation is
introduced as a resource to coherently control the system (Ver-
straete, Wolf, & Ignacio Cirac, 2009). The idea is to consider open
quantum systems, and stabilize their quantum states by engineer-
ing the system–environment interaction. If designed judiciously,
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the dissipationwill drive the system to a target steady state regard-
less of the initial state and external perturbations. This method can
be used to generate highly entangled quantum states, and perform
quantum computation by encoding the computation result to the
steady state of the system. Since dissipation of energy is the key
physical principle behind this method, this kind of coherent con-
trol approach can be referred to as control by dissipation. Our goal
in this paper is to formulate the method of control by dissipation
within the framework of ground-state stability, and then propose
approaches for the synthesis of system–environment dissipative
interactions that rely on Lyapunov methods for stability analysis.

Stability of quantum states has been the focus of many
theoretical studies. Many of them have successfully derived
sufficient conditions for convergence of quantumMarkov systems
to a steady state (Frigerio, 1978; Koga & Yamamoto, 2012; Kraus
et al., 2008; Pan et al., 2014; Sauer, Gneiting, & Buchleitner, 2013;
Schirmer & Wang, 2010; Spohn, 1976). In particular, the stability
of quantum states in a dissipative setting has been considered
in Altafini and Ticozzi (2012), Schirmer and Wang (2010) and
Ticozzi and Viola (2009, 2012). In these studies, the target state
is often explicitly given and follows a Schrödinger-picture master
equation. The dissipative couplings, compensated by Hamiltonian
control, can generate a Markov process that converges to the
target states (Ticozzi & Viola, 2009, 2012). The implementation of
the system–environment couplings with the practical resources
has been investigated experimentally. Dissipative engineering of
several types of quantum systems has been demonstrated in recent
years (Barreiro et al., 2011; Kastoryano, Reiter, & Sørensen, 2011;
Krauter et al., 2011; Lin et al., 2013; Schindler et al., 2013; Shankar
et al., 2013).

In this paper, we adopt an alternative path to approach the sta-
bility theory within the Heisenberg picture, where instead of des-
ignating target states explicitly, they are characterized as ground
states a Lyapunov operator, and the stability problem is trans-
formed to the problem of stabilization of the ground states of the
Lyapunov operator. The formalism of Lyapunov stability can thus
be conveniently introduced to engineer the desired system dissi-
pation within this framework. This allows to derive tractable suffi-
cient conditions expressed in terms of operator inequalities, which
can be used for the synthesis of the desired system–environment
coupling. Such conditions is the main contribution of this paper
compared to our previous work (Pan et al., 2014). The general re-
sults regarding stability of Lyapunov operators obtained in (Pan
et al., 2014) do not readily apply to the problem of control by dis-
sipation.

An important advantage of the Heisenberg-picture approach
developed here is that the target state does not need to be
given in advance. In addition to the entangled-state engineering
applications in which the Lyapunov operator is chosen based on
the knowledge of the target state, there exists a large class of
applications where the control goals are posed as minimization of
the expectation of an operator while the target state with respect
to which the expectation is taken is not known. For example, the
problems of sequential quantum computation and the quantum
satisfiability problem (SAT) (Bravyi, 2006; Nielsen & Chuang, 2004)
involve operators which play the role of cost functions. In these
problems, the target states which minimize the expectation of
the operators are unknown and result from computation and/or
control. Moreover, the target state in these applicationsmay be not
unique. This complicates the analysis based on the conventional
Schrödinger-picture approach. Therefore, the Heisenberg-picture
approach extends the applicability of the control by dissipation.

One of the main contributions of this paper is concerned with
the scalability of the control by dissipation, when this control
method is applied to large quantum systems comprised of mul-
tiple interacting subsystems coupled with the environment. The

Heisenberg-picture Lyapunov approach has an advantage in that
the problem can be treated in a way that resembles the decom-
position–aggregation engineering (Bellman, 1962; Šiljak, 1978) for
complex classical systems. Namely, a large-scale quantum system
is decomposed into subsystems and an individual Lyapunov op-
erator is associated with a subsystem. This allows us to establish
conditions, expressed in terms of the subsystems’ Lyapunov oper-
ators, under which the quantum system is guaranteed to converge
to its ground state. Herewe note a similaritywith the classical con-
nective stability conditions (Šiljak, 1978), which have proved to be
useful in the synthesis of decentralized controllers for large-scale
systems.

A typical methodology for the synthesis of dissipations
involves two problems, the calculation of the stabilizing system–
environment couplings and the implementation of these couplings
using the available physical resources. For example, it is possible to
construct a coherent optical network to realize a linear coupling
(Nurdin, James, & Doherty, 2009). Therefore, in this paper we
focus on the first problem of calculation of coupling operators
that render the states of the ground energy asymptotically stable.
Particularly, we can apply this method to check the feasibility
of the solutions proposed in Verstraete et al. (2009). It is worth
mentioning that the constraints on the system–environment
couplings could be greatly relaxed if Hamiltonian control is
available (Ticozzi & Viola, 2009, 2012).

The preliminary version of this paper has been accepted for
presentation at theAmerican Control Conference (Pan, Ugrinovskii,
& James, 2015). Compared to the preliminary conference version,
this paper has been substantially revised and expanded. It includes
a detailed exposition of the background on open quantum systems,
the new material on the scalability of the Lyapunov methods,
synthesis of dissipation, the examples and an application to
stabilization of quantum states associated with quantum toric
codes. The paper also includes detailed proofs of all the results and
gives detailed discussions of these results,whichwere not included
in Pan et al. (2015).

The paper is organized as follows. In Section 2, we introduce the
notations and the model considered in this paper. In Section 3 we
present the ground-state stability analysis of Lyapunov operators.
Section 4 discusses the scalability problem, where a large quantum
system may be governed by more than one Lyapunov operators.
Section 5 concerns with the synthesis of the dissipation. More
explicitly, this section concerns with the calculation of the correct
coherent couplings for the ground-state stabilization when the
Lyapunov operator is given. Conclusion is given in Section 6. The
proofs of the results are given in the Appendix.

2. Notations and preliminaries

2.1. Open quantum systems

Consider a Hilbert space H and define B(H) as the space of
bounded operators on H . We only consider finite-dimensional
quantum systems throughout this paper. In other words, H is as-
sumed to be finite-dimensional throughout the paper. Hence all
bounded operators in our case are representable as complex ma-
trices. Let X ∈ B(H). XT denotes the transpose of X and XĎ is the
adjoint of X . An operator X is called an observable if XĎ

= X . The
notation X ≥ 0 (X ≤ 0)means the operator X is a positive (nega-
tive) semidefinite operator.WewriteX > 0 if X is positive definite.
Also, we will use the notation X ≽ 0 for positive semidefinite op-
erators X whose smallest eigenvalue is equal to 0.

Given a bounded observable X ∈ B(H) and a trace class
operator ρ on H, ⟨X⟩ρ denotes the trace of Xρ, ⟨X⟩ρ = TrXρ.
When ρ is a density state, i.e., a matrix whose trace is equal to 1,
then ⟨X⟩ρ is the mean value of X evaluated at the density state ρ.
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