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a  b  s  t  r  a  c  t

Pre-shock  waveform  analysis  for optimizing  the  timing  of shock  delivery  could  be  immensely  helpful  to
emergency  medical  personnel  in treating  ventricular  fibrillation.  For  this  purpose,  our  proposed  method
resolves  the pre-shock  surface  electrocardiogram  into  independent  sources  using  a  blind  source  separa-
tion  approach.  The  electrocardiogram  pre-shock  waveforms  were  transformed  into  the  wavelet  domain
and the  independent  sources  were  extracted  using  component  analysis.  A database  consisting  of  50  pre-
shock  waveforms  from  50 pigs  was  used  in this  study.  The  pre-shock  waveforms  were  obtained  using  a
controlled  protocol.  After  ventricular  fibrillation  was  induced  and  left untreated  for  2–5  min,  cardio  pul-
monary  resuscitation  was  administered  for  3  min,  followed  by  defibrillation.  Energy-based  features  were
extracted  from  the  independent  sources  and  a  linear  discriminant  analysis  based  pattern  classifier  was
used  to  evaluate  the  features  for their  ability  to  discriminate  between  successful  and  unsuccessful  shock
outcomes.  The  proposed  method  achieved  a classification  accuracy  of 68%  (P < 0.02),  and  the  classification
results  were  cross-validated  using  the  leave-one-out  method.  A comparative  study  demonstrated  that
the proposed  approach  performed  relatively  well  compared  to existing  methods  for  the given  database.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Annually, about 300,000 sudden cardiac deaths (SCD) occur in
North America [1], most of which are related to ventricular fibril-
lation (VF). During VF, the lower chambers of the heart contract
rapidly in an uncoordinated fashion, resulting in poor or no blood
circulation. Without immediate medical attention within minutes
of its onset, VF will result in fatality. In spite of decades of research,
the mechanisms behind VF is not yet fully understood and hence
there are no universally effective therapies for treating VF after
its onset. Currently, the only available treatment option for VF is
defibrillation by applying electric shocks to reset the heart, which
may  or may  not restore normal rhythm. To improve shock suc-
cess and thereby survival rates, research efforts have been directed
toward identifying methods and markers that could help emer-
gency medical staff (EMS) optimize defibrillation shock parameters
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and delivery, in addition to cardio pulmonary resuscitation (CPR)
maneuvers and drug therapy.

At present, there are two prevailing theories that attempt to
explain VF: multiple wavefronts theory and rotor theory [2,3].
In general it is believed during VF that many dynamic sources
attempt to take control of the heart’s rhythm, resulting in disor-
ganized muscle contractions at high rates; this is in contrast to
normal heart rhythm, where a single source (i.e. sinoatrial node)
controls the heart’s uniform contractions. These sources (mapped
as spatio-temporal organization centers or breakthroughs [4,5])
degenerate as time progresses from the onset of VF, resulting in
different manifestations of VF dynamics. Mechanistic studies often
require extensive interventional multi-channel spatio-temporal
cardiac data to track these sources and study VF in a research
setup. However, in real world emergency situations, EMS  person-
nel have to make appropriate choice of therapies to improve shock
success using only single or few surface electrocardiograms (ECG).
Hence, most of the existing works on prediction and improve-
ment of shock success derive markers from fewer physiological
parameters and/or electrocardiogram channels and do not have
the luxury of multi-channel spatio-temporal data. From the surface
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ECG signals, these markers are often derived from capturing dif-
ferent characterization in temporal, spectral, and time-frequency
domains, which may  or may  not have meaningful correlation with
underlying sources.

A comprehensive review of some of the works in predicting
defibrillation shock success are discussed in the literature [6,7].
Briefly, the amplitude and energy of the ECG were proposed by
[8,9] from the viewpoint that the amplitude of the ECG during
VF decreases with time, indicating deterioration of cardiac func-
tion. The centroid frequency (CF) of the ECG was  proposed as a
marker [10] since the CF decreases with time during VF, which cor-
relates with the status of the heart over time. Amplitude spectrum
analysis (AMSA) is another well-known marker derived from the
spectral domain, which computes the spectrally weighted ampli-
tudes and associates them to shock success [11,12]. Other works
quantified the chaotic or self-similarity features in an ECG signal as
markers that could be associated with the shock success. Two such
markers include scaling exponent (SE) and logarithm of absolute
correlation (LAC) [13,14]. Wavelet analysis has also been proposed
on the ECG during VF [15] and markers in the wavelet domain,
such as cardioversion outcome prediction (COP) [16] and wavelet
entropy [17], were introduced. Our preliminary works have also
explored wavelet features and arrived at a relative scale distribu-
tion width (SDW) feature in predicting shock outcomes [18,19],
expanding the application of this feature to quantify CPR efficacy
by indirectly measuring coronary flow during VF [20]. Although
the aforementioned works did arrive at markers that correlated
with shock success, there are no studies (to the authors’ knowl-
edge) that attempt to relate the mechanistic insights of underlying
sources that maintain VF and their relation in characterizing VF for
predicting shock success. In addition, since the EMS  personnel only
have access to the surface ECGs in out-of-hospital VF incidents, it
is essential to resolve (or decompose) this single lead ECG to iden-
tify the underlying sources, otherwise this approach may  not have
practical benefits in cardiac resuscitation.

To achieve the above goal, a blind source separation (BSS) [21]
based approach is suggested to resolve the single lead ECG into a
combination of statistically independent sources (ISs), which can
then be used to extract meaningful features from the ISs and asso-
ciate them with the prediction of shock success for optimizing
cardiac resuscitation. In order to identify these underlying ISs from
a linear mixture, BSS is used to extract the underlying signals with
minimal a priori knowledge. A well-known approach to estimat-
ing underlying independent signals from a linear mixture is single
mixture source separation. A few works in the field of audio and
biology [22,23], have used BSS techniques to extract ISs from a sin-
gle mixture. In our initial study, we demonstrated the extraction
of features from ISs (using the short-time-Fourier-transform) that
could be related to shock outcomes [24]. In this work, we  expand
upon our previous work by using a larger database to arrive at fea-
tures extracted from ISs and using the wavelet domain that relates
to VF mechanism. This research may  be used by EMS  personnel
to inform optimized cardiac resuscitation. Finally, this work also
presents a comparative analysis with existing features.

2. Database

For the objective of predicting shock success, anonymous time
series ECGs from a cardiac resuscitation study using pigs at St.
Michael’s Hospital in Toronto, Canada were obtained. Fifty (n = 50)
previously healthy pigs of both genders were used. VF was  induced
and left untreated for 2–5 min. To induce VF, burst pacing was
applied by giving 10 V of 60 Hz signal to the heart for 2 s. At the end
of this period, chest compressions were started using a pneumatic
device (Lucas, Jolife AB, Lund, Sweden) at 100 compressions/min,

along with manual ventilation at 6 breaths/min using 5–6 L/min of
100% O2 with an artificial manual breathing unit bag. CPR was con-
tinued at a rate of 30:2 (compressions to respirations) per minute
for 3 min. After CPR, a defibrillation shock was  first attempted at
150J. If the animal failed to respond, CPR was continued for 2 min
followed by defibrillation at 200J. Upon failing again, the combi-
nation of CPR and defibrillation was repeated, but with a stepwise
increase in the defibrillation shock energy to a maximum of 360J.
The criteria for a successful defibrillation is defined as a return
of spontaneous circulation (at least 12 normal heartbeats) within
1 min  of the delivery of the shock. For the 50 deidentifiable pre-
shock waveforms that were used for the analysis in the proposed
work, 25 of them had successful shock outcomes and 25 had unsuc-
cessful shock outcomes. The pre-shock waveforms used in this
study were limited to be from the first 3 shocks (to eliminate time
dependency), with 88% of the signals extracted from the first shock
attempt. The protocol was approved by the Animal Care Committee
of St. Michael’s Hospital.

The VF time series ECGs obtained from the database were down-
sampled from 1 kHz (original acquisition sample rate) to 250 Hz to
reduce the computational complexity. A bandpass filter was used
to remove low (below 3 Hz) and high (above 15 Hz) frequency arti-
facts because most of the dominant components in pig VF falls
within this frequency range [25]. The VF time series ECGs signals
were normalized to remove the effect of the absolute amplitude. In
cases where the CPR artifact had affected the pre-shock waveform,
a notch filter was also implemented to mitigate this effect on the
pre-shock waveform. The length of the pre-shock waveforms used
in this study was  4 s for all the cases.

3. Methodology

In order to decompose these signals into ISs, a BSS approach
was applied on the VF time series ECGs. In the first stage, the sig-
nal is projected onto the time-frequency plane using continuous
wavelet transform (CWT). This is followed by the extraction of time
and frequency basis components using singular value decomposi-
tion (SVD). Independent component analysis (ICA) of the time and
frequency basis components ensures independence of each com-
ponent. In the final stage of the BSS, the independent time and
frequency basis components are combined to create a scalogram for
each IS, and the inverse wavelet transform is then used to produce
the ISs themselves. Features extracted from each IS were then used
for the purpose of predicting the shock outcome. A flowchart out-
lining this process is illustrated in Fig. 1. The following subsection
briefly presents the stages of BSS.

3.1. The blind source separation algorithm

The necessary steps needed to obtain ISs are illustrated using a
sample ECG during VF in Fig. 2.

3.1.1. Projection of the data into the time-frequency domain
In order to perform ICA on a 1-dimensional ECG time series

signal, the signal has to be transformed to a 2-dimensional rep-
resentation. For this purpose, the signal was projected onto the
time-frequency plane using CWT  [26]. The CWT  used to map  the
pre-shock waveform into the time-frequency domain is given by
Eq. (1).

S(a, b) =
L∑

n=1

x[n]�∗
a,b[n] (1)

The matrix S(a, b) is the matrix of wavelet coefficients, x is the
ECG VF time series signal with L time samples and �∗

a,b
is the
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