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a b s t r a c t

In this paper, we propose a method of enhanced nonlinear damping control for a class of singularly
perturbed interconnected nonlinear systems (SPINSs). Instead of simply canceling out the interconnection
between slow and fast subsystems, the proposed method transforms SPINS into a feedback connection of
two output strictly passive subsystems. Then, enhanced nonlinear damping is implemented to improve
the transient behavior of slow subsystem. The proposed method provides weighting factors for each
tracking error which enable the energy function to be designed to shape the tracking performance
for each state. We also design an augmented state observer to estimate unknown disturbances and
unmeasurable states. Using a composite Lyapunov function, we prove that the origin of the tracking error
dynamics is globally exponentially stable. It is also analyzed that the tracking errors are globally uniformly
ultimately bounded for a time-varying boundeddisturbance. Experimentswere performed to evaluate the
tracking performance of the proposed method and our results validate the effectiveness of the proposed
method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Direct current motors and permanent magnet synchronous
motors have been widely used for various servo systems. These
systems can be classified as the singular perturbed interconnected
nonlinear systems (SPINSs), which can be defined as

ẋ = Axx + Bxg0(y)T z − Bxw(t)

εż = Azz + g1(y)BT
x x + Bzu

y =
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∈ R1×r , C2 ∈ Rl−1×r .

Here, x = [x1 · · · xr ]T ∈ Rr is the state of the slow subsystem,
z = [z1 · · · zm]

T
∈ Rm is the state of the fast subsystem, y ∈ Rl+m

is the measurable output, u ∈ Rm is the input of the system, w is
an unknown disturbance bounded as

sup
t

|w(t)| ≤ wmax, sup
t

|ẇ(t)| ≤ ẇmax,

and the time scale factor is 0 < ε ≪ 1. g0(y) ∈ Rm and g1(y) ∈

Rm are sufficiently continuously differentiable nonlinear functions
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that satisfy

γ1g0(y) + g1(y) = 0 (2)
0 < ∥g0(y)∥2 ≤ γ2 (3)

where γ1 > 0 and γ2 > 0. Az ∈ Rm×m is the system matrix of the
fast subsystem, Im ∈ Rm×m is the identity matrix, and Bz ∈ Rm×m

is a nonsingular matrix. n = r + m is the dimension of the given
dynamics and bd ≤ 0 is a real number. The matrix Ax represents
the series of integratorswith viscous damping bd of themechanical
system. For motor dynamics in the form of SPINS, the states of fast
dynamics z and the input u are the phase currents and voltages,
respectively. Therefore, we assume that z is measurable and Bz
is nonsingular without loss of generality. Equality (2) represents
Newton’s third law of motion (action and reaction force pairs) and
inequality (3) is required to hold the interconnection between the
slow and fast subsystems for any y. Note that various systems, such
as multi-link robot manipulators actuated by electric motors or
electro-hydraulic actuators, can be transformed into a SPINS (1) by
feedback linearization (Seo, Venugopal, & Kenné, 2007).

To improve the tracking performance of various systems in
the form of SPINSs, various feedback control methods have been
proposed (Bodson, Chiasson, Novotnak, & Rekowski, 1993; Fekih,
2008; Kim, Shin, & Chung, 2012, 2013; Kim, Won, Shin, & Chung,
2012; Liu & Li, 2012; Wang, Book, & Huggins, 2012; Yan & Wang,
2013). In these literature, the control input was designed such
that the given SPINSs become cascade interconnected systems of
tracking errors with asymptotically stable origins (Chaillet, Angeli,
& Ito, 2014). This implies that the fast dynamics is perfectly
decoupled from the slow dynamics but still affects the responses
of the slow dynamics. To neglect the transient response of the slow
dynamics affected by the fast dynamics, the previousmethods only
make the tracking error of the fast dynamics ez quickly converge to
zero. From the viewpoint of singular perturbation theory, however,
this cannot be used to generate the motion of ez to improve the
stabilizing performance of the tracking error of the slow dynamics
ex because ez = 0 is an asymptotically stable equilibrium point
regardless of the motion of ex. This implies that the equilibria of
ez as a function of ex must be designed to improve the stabilizing
performance of ex in the transient period.

Through interconnection and damping assignment passivity
based controllers, it is possible to design the equilibria of ez to
help improve the stabilizing performance of ex in the transient
period (Acosta, Ortega, Astolfi, & Mahindrakar, 2005; Gómez-
Estern & Van der Schaft, 2004; Ortega, Spong, Gómez-Estern, &
Blankenstein, 2002; Ortega, van der Schaft, Maschke, & Escobar,
2002). In the literature (Acosta et al., 2005; Gómez-Estern & Van
der Schaft, 2004; Ortega, Spong et al., 2002; Ortega, van der
Schaft et al., 2002), an analysis determined that the total energy
function asymptotically converges to zero. However, it has not
addressed how to design the total energy function to enable
individually adjustment of the stabilization performance for each
state. The effect of the interconnection between the dynamics
of ex and ez on the convergence ratio of ex has also yet to be
analyzed. Furthermore, disturbances that may affect the tracking
performance were also not considered.

In this paper, we propose a method of enhanced nonlinear
damping control for a class of singularly perturbed interconnected
nonlinear systems (SPINSs). The tracking errors, including the
virtual inputs, are defined in order to transform SPINSs into
tracking error dynamics that has individual inputs for each state.
The virtual inputs are designed to make the system matrix of
the tracking error dynamics of a slow subsystem become a
special form, which includes weighting factors for each state.
The control input is designed to ensure that the tracking error
dynamics of SPINSs becomes a feedback connection of two output
strictly passive subsystems. The proposed method enables the

tracking performance of each state to be adjusted by theweighting
factors. We analyze the interconnection between fast and slow
subsystems that generate the nonlinear damping effect in the
feedback connection of two output strictly passive subsystems.
From this analysis, we show that a high convergence ratio for fast
subsystems does not always improve the tracking performance
of the slow subsystem especially in a slow manifold, since the
nonlinear damping effect decreases as the convergence ratio of
ez increases. We also design an augmented state observer that
estimates the unknown disturbances and unmeasurable states.
Using a composite Lyapunov function, we prove that the origin
of the tracking error dynamics is globally exponentially stable
under an unknown constant disturbance. It is also analyzed that
the tracking errors are globally uniformly ultimately bounded
for an unknown time varying bounded disturbance. Experiments
utilizing a permanent magnet stepper motor, which is a type
of SPINS, are performed to evaluate the tracking performance
of the proposed method. The experimental results validate the
effectiveness of the proposed method.

2. Controller design

In this section, the controller design is presented. First, the
tracking error dynamics, including the virtual inputs, are derived.
Then, we design the virtual inputs such that the system matrix of
the tracking error dynamics of x has a special form. The control
input u is designed to make the tracking error dynamics of SPINS
become output strictly passive.

2.1. Virtual input design

In this subsection,we derive the tracking error dynamics, which
includes virtual inputs, to simplify the controller design. The virtual
inputs x∗

i and z∗ are designed such that the system matrix of the
tracking error dynamics of x has weighting factors for each state.
In the design process of the virtual inputs, we assume that all of
the states and the disturbance xi, z andw(t) aremeasurable. Let us
define the tracking errors as

ex =

ex1 · · · exr

T
ez = z∗

− z, exi = x∗

i − xi i = 1, . . . , r
(4)

where the virtual inputs x∗

i and z∗ will be designed. With (1) and
(4), the tracking error dynamics can be rearranged as

ėx =Axex + Bxg0(y)T ez + Bxw(t) + Irux

εėz =εż∗
− Azz − g1(y)BT

x x − Bzu
(5)

where Ir ∈ Rr×r is the identity matrix and

ux =

ux1 ux2 · · · uxr

T
uxi =


ẋ∗

i − x∗

i+1 i < r
ẋ∗

r − bdx∗

r − g0(y)T z∗ i = r.

The controllers for each state can be individually designed using
the state feedback. To decouple the states xi and z from the tracking
errors exi and ez , each x∗

i should be designed with x1, . . . , xi−1 and
z∗ should be a function of x. We choose the virtual inputs x∗

i and z∗

as

x∗

i =


xd1 i = 1
ẋd1 + ρ1ex1 i = 2
ẋ∗

i−1 + κi−1exi−2 + ρi−1exi−1 otherwise.

z∗
=

g0
gT
0 g0

{ẋ∗

r − bdxr + κr−1exr−1 + ρrexr + w(t)}

(6)
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