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a  b  s  t  r  a  c  t

We  propose  a  method  to  use  electroencephalographic  (EEG)  coherences  as  features  in a brain–computer
interface  (BCI).  The  coherence  provides  a sense  of  the  brain’s  connectivity,  and  it  is  relevant  as  different
regions  of  the  brain  must  communicate  between  each  other  for the integration  of sensory  information.  In
our case,  the  process  of feature  selection  is  optimized  in  the  sense  that  only  those statistically  significant
and  potentially  discriminative  coherences  at a specific  frequency  are  used,  which  results  in  a  feature  vec-
tor of  reduced-dimension.  Next,  those  features  are  classified  through  an  optimized  linear  discriminant,
where  the  best  discriminating  hyperplanes  are  selected  such  that  the  area  under  the  receiver  operating
characteristics  (ROC)  curve  is  maximized.  Overall,  the  proposed  EEG  coherence  selection  and  classifica-
tion  method  can  provide  efficiency  rates  similar  to those  obtained  with  other  methods  in  BCI,  but  with the
advantage  of blindly  selecting  and  optimal  combination  of  features  out of  all  the  possible  pairwise  coher-
ences.  We  demonstrate  the  applicability  of  the  proposed  method  through  numerical  examples  using  real
data from  motor  and  cognitive  tasks.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A brain–computer interface (BCI) is a communication system
that allows a subject to act on his/her environment solely by means
of his/her thoughts, i.e. without using the brain’s normal output
pathways of muscles or peripheral nerves [1]. Non-invasive BCIs
rely on electroencephalographic (EEG) measurements of the brain’s
activity to read out the intentions of the subject and translate them
into commands for a computerized system.

The translation from the brain activity to a command is usually
achieved by means of a feature generator that extracts feature
values from the EEG signals that correspond to the underlying
neurological mechanism employed by the user for control. Next, a
feature translator classifies the features into logical control signals,
such as a two-state discrete output. Many methods have been
proposed so far to carry out the extraction/classification processes
in BCI, and a very comprehensive review about them can be found
in [2]. In general, feature extraction methods are closely related to
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specific neuromechanisms, while feature classification algorithms
are determined by the type of features that they discriminate.

Here, we  examine the use of the EEG coherence as feature in
a BCI. The coherence provides a sense of the brain’s connectivity,
and it is relevant to measure it as different regions widely dis-
tributed over the brain must communicate between each other in
order to provide the basis for integration of sensory information,
as well as for many functions that are critical for learning, mem-
ory, information processing, perception, and behavior. Transient
periods of synchronization of oscillating neural discharges have
been proposed to act as an integrative mechanism that may  bring a
widely distributed set of neurons together into a coherent ensemble
that underlies a cognitive act [3], and many studies have used the
EEG coherence to quantify such synchronization process (see [4]
and references therein). In [5], the patterns in the coherence were
studied during sequential and simultaneous tasks, while in [6], sig-
nals corresponding to spontaneous EEG, imaginery movement, and
movement execution were classified based on the coherence using
hidden Markov models and a multilayer perceptron. Nevertheless,
the only attempt known to us of using the coherence in the con-
text of BCI can be found in [7]. There, the use of the coherence as a
feature was assessed for the case of measuring the mean coupling
between signals recorded from an electrode and its neighbors, and
a few individual electrode pairs reflecting connectivity between
fronto-centro-parietal and temporal lobes. Given the limited num-
ber of subjects tested and the coherences that were assessed, their
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results do not allow for a statistical conclusion regarding general
performance of the proposed measures. Nevertheless, the results
in [7] suggest that coherence-based features might not perform
as well as other features, but still could be relevant for classifying
mental tasks.

Therefore, in this paper we propose an optimized method for
feature selection and classification which is customized for the EEG
coherence. The process of feature selection is optimized in the sense
that only those statistically significant and potentially discrimina-
tive coherences at a specific frequency are used, which results in
a feature vector of reduced-dimension. Next, those features are
classified through an optimized linear discriminant, where the
best discriminating hyperplanes are selected such that the area
under the receiver operating characteristics (ROC) curve is max-
imized. Based on these ideas, the paper is organized as follows:
the coherence is briefly reviewed in Section 2, then the proposed
coherence-based feature selection and classification process is
introduced; in Section 3, we show the applicability of our method
through a series of numerical examples using real EEG data; in
Section 4, we discuss the results and future work.

2. Methods

In this section we briefly review the concept of coherence, then
we explain our proposed coherence-based feature selection and
pose a classification procedure customized for those features.

2.1. Coherence

Let us define xm(n) as the m-th EEG measurement, for m = 1, 2,
. . .,  M,  obtained from a set of available sensors S = {s1, s2, . . .,  sM}
and acquired at time samples n = 1, 2, . . .,  N. Then, the auto-spectral
densities of signals xj(n) and xk(n), with j, k ∈ {1, 2, . . .,  M}  and j /= k,
are given by

P{∗}(f ) =
∞∑

�=−∞
E{x{∗}(n)x{∗}(n − �)}e−j2��f , (1)

where {∗} indicates either j or k, E{ · } indicates the expected value,
and f is the frequency. Note that (1) corresponds to the Fourier
transform of the auto-correlation of x{∗}(n). Similarly, the cross-
spectral density is given by

Pjk(f ) =
∞∑

�=−∞
E{xj(n)xk(n − �)}e−j2��f . (2)

Therefore, based in (1) and (2), the coherence between xj(n) and
xk(n) is defined as [8]

�2
j,k(f ) = |Pjk(f )|2

Pj(f )Pk(f )
. (3)

The coherence is a measure of the degree of correlation of
the spectral power in an specified bandwidth between two sig-
nals acquired from two electrodes. High coherence implies a large
degree of communication between different brain regions whereas
low coherence suggests relative independence [9].

In our case, we are interested in analyzing the connectivity
between a selection of L sensors, i.e.,

S′ =
{

s′
1, s′

2, . . .,  s′
L

}
⊂ S, (4)

with L � M for S′ to be a proper subset of sensors chosen out of S. Let
us refer to the measurements on two of those sensors as xl1 (n) and

xl2 (n), such that s′
l1

, s′
l2

∈ S′ and l1 /= l2. Then, the D =
(

L
2

)
pair-

wise coherences �2
l1,l2

(fs) for each of the selected L sensors can be

computed through (3). Note that those coherences can be obtained
for different frequencies of interest. In our case, we select a fre-
quency, denoted by fs, in which the largest differences between
tasks are expected based on physiological information. Neverthe-
less, a method like the one proposed in [10] can be used to perform
a subject-specific estimation of the principal time-varying frequen-
cies by means of non-stationary time series models, then the most
significant frequency components of the EEG could be used as fs in
the scheme here proposed.

Next, the coherences obtained at fs for a set of sensors are
arranged into D-dimensional feature vectors y, where each of its
elements corresponds to a pairwise coherence �2

l1,l2
(fs). In our case,

the optimality criterion to choose the best feature vector out of the(
M
L

)
possible ones is based in the statistical significance of the

pairwise coherences.

2.2. Statistical significance

In addition to computing the coherence between EEG mea-
surements, it is necessary to assess its significance in order to
assure that such coherence is indeed a reflection of the connec-
tivity between different brain areas. Such assessment is usually
performed in terms of a 100(1 − ˛)% confidence interval (where the
significance level is denoted by ˛), and different methods have been
previously proposed for such assessment. In this paper we  use the
method proposed in [11], where an ensemble of K pairs of surrogate
time series (which share the features of the original EEG measure-
ments but are completely uncoupled) are generated as realizations
of two linearly independent stochastic processes. The coherence
between each pair of surrogate series is calculated, then an empiri-
cal sampling distribution of the coherence is estimated from all the
surrogate data. The threshold below which measurements xl1 (n)
and xl2 (n) are regarded as non-coherent (denoted by �l1,l2 ) is set
at the 100(1 − ˛) percentile of the estimated sampling distribution.
Hence, we are interested only in those coherence values surpassing
the threshold, i.e.

�2
l1,l2

(fs) > �l1,l2 (fs). (5)

2.3. Optimal feature vector

Once the significance of the coherence is determined, next we
are interested in those cases where the EEG signals from different
events can be discriminated. Let us consider the case of i = 1, 2, . . .,
I  different classes, each of them comprised by those t = 1, 2, . . .,  Ti
trials (independent EEG measurements) meeting the condition in
(5). Furthermore, if we  denote the coherence between signals for a
given trial and class by {�2

l1,l2
(fs)}

i,t
, then the mean class-coherence

is given by

�i = 1
Ti

Ti∑
t=1

{�2
l1,l2

(fs)}
i,t

, (6)

where �i is used instead of �i(fs) for notational convenience. Based
on (6), we  can set up the following hypothesis test in order to
determine if the events can be discriminated through their EEG
coherences:

Ho : �1 = �2 = · · · = �I

Ha : any negation of Ho.
(7)

Independently of the method used to accept or reject the null-
hypothesis (equal/different variances, paired/unpaired samples),
we rely in the p-values of the corresponding statistical test in order
to select the optimal coherences of L sensors. Hence, if we denote
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