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a b s t r a c t

The Transverse Function (TF) control approach is applied to the control of a generic motorboat endowed
with a surge force along the stern–bow direction and a torque actuation to modify the boat’s orientation.
With respect to more conventional methods this approach allows for uniform practical stabilization of
any smooth reference pose (i.e. position+orientation) trajectory. This includes fixed-poses in the absence
of a sea-current, whose asymptotic stabilization cannot be achieved by classical feedback controllers, and
non-feasible pose trajectories, i.e. trajectories that are not solutions to the system’s motion equations and
thus cannot be stabilized asymptotically.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A typical motorboat is an underactuated dynamic system with
three main degrees of freedom (surge, sway and yaw) and only
two control inputs (a surge force and a control torque for yaw
modification). Associated motion control problems are commonly
classified into three sub-categories, namely path following, position
tracking, and pose (position + orientation) tracking including set-
point stabilization. Path following refers to the problem of using
orientation control in order to zero the lateral distance between
the vehicle and a pre-specified geometric path, given a forward
(non-zero) velocity. This problem, first addressed in the case of
nonholonomic mobile robots (Samson, 1992), was subsequently
extended to underactuated vehicles (Encarnaçao & Pascoal, 2000;
Skjetne, Fossen, & Kokotović, 2004). Its adaptation to marine vehi-
cles led to solutions including the hierarchical controllers derived
in Fossen andPettersen (2014) and the cascaded-systems approach
in the presence of unknown ocean currents developed in Aicardi
et al. (2001) and Moe, Caharija, Pettersen, and Schjolberg (2014).
The present paper addresses position and pose tracking. Position
tracking refers to the problem of stabilizing asymptotically a time-
parametrized reference trajectory for a point located on the vehi-
cle’s main body. Due to the system’s dynamics nonlinearities the

✩ This work is supported by FP7-ICT-2013-10 of the EU 7th Framework
Programme, through the project DRONIC. The material in this paper was not
presented at any conference. This paper was recommended for publication in
revised form by Associate Editor Jun-ichi Imura under the direction of Editor
Toshiharu Sugie.

E-mail addresses: thamel@i3s.unice.fr (T. Hamel), claude.samson@inria.fr,
csamson@i3s.unice.fr (C. Samson).

determination, in the form of a time-parametrized function, of the
vehicle’s orientation along such a trajectory is not possible ex-
cept for very specific trajectories (along straight lines and circles,
for instance) commonly referred to as trimming trajectories. Along
these trajectories a linear approximation of the system’s dynam-
ics can be explicited. Provided that the forward reference velocity
does not vanish, the obtained linearized system is controllable and
the tracking problem can be addressed with classical linear con-
trol techniques. To enlarge the stability domain and address more
general reference position trajectories nonlinear control solutions
have been studied. A way to passively stabilize the boat’s orien-
tation along a reference position trajectory with non-zero surge
velocity consists in controlling the position of a Virtual Reference
Point (VRP) located at the bow or ahead of the ship, as proposed
in Berge, Ohtsu, and Fossen (1999). Other contributions take the
option of complementing the reference position with a reference
orientation that complies with the boat’s motion equations so as to
asymptotically stabilize the resulting feasible reference pose trajec-
tory (Jiang, 2002; Lefeber, Pettersen, & Nijmeijer, 2003; Pettersen
& Nijmeijer, 1998). A remaining difficulty with this approach is the
calculation of the reference orientation, a difficulty amplified by
the imprecise knowledge of the environmental forces exerted on
the boat. In this latter respect more or less simplified modelling
equations are used. For instance, in the above cited references,
controllers are derived from a model that does not account for
squared velocity dependent hydrodynamic forces and torques. In
Silvestre, Pascoal, and Kaminer (2002) a more sophisticated model
is considered and a gain scheduling control approach is applied.
In Aguiar and Hespanha (2007) baskstepping and Lyapunov-based
control solutions, derived for a class of underactuated systems,
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achieve ultimate boundedness of the position tracking errorswith-
out assuming non-zero surge velocity. The proposed control design
is also applied to path following and is complemented with a su-
pervisory adaptation policy to handle model uncertainties. As for
set-point stabilization, the problem consists in stabilizing either
asymptotically or practically a fixed desired pose in the absence
of environmental perturbations (sea-current or wind). It is more
challenging than the position tracking problem in the sense that
classical control design methodologies do not provide solutions.
The first reason is that the linearization of the system dynamics
at the desired pose is not controllable. An even more troublesome
fact is that the system does not satisfy Brockett’s necessary condi-
tion, Brockett (1983) for the existence of a time-invariant feedback
asymptotic stabilizer, either linear or nonlinear. Solutions circum-
venting this difficulty were first developed for nonholonomic mo-
bile robots and consisted in working out nonlinear time-varying
stabilizers (Samson, 1992). Adaptations of this type of control to
the practical stabilization of a motorboat are presented in Lefeber
et al. (2003) and Pettersen and Fossen (2000). More recently, this
type of problem has given rise to the development of the so-called
Transverse Function control approach that allows for the practical
stabilization of any pose trajectory, either feasible or non-feasible
(Morin & Samson, 2003). This approach thus applies directly to
position tracking and set-point stabilization, with the comple-
mentary asset of providing solutions to a fourth control problem
seldom addressed in the control literature, namely the practical
stabilization of any pose trajectory, either feasible (i.e. complying
with the system’s motion equations) or non-feasible. In the case of
a motorboat, a simple example of a non-feasible pose trajectory is
a fixed desired pose whose orientation is not aligned with the di-
rection of the sea-current. The present paper may be viewed as an
extension of the hovercraft control solution example pointed out in
Morin and Samson (2005). More precisely, it explains in more de-
tail how the TF approach applies to the design of motorboat con-
trollers, with environmental forces taken into account explicitly,
and it provides proofs of complementary stability and convergence
results of interest for practical purposes. The attentive reader will
also find out that the proposed control design is much related to
those described in Behal, Dawson, Dixon, and Fang (2002) and Do
(2010). The first of these references aims at achieving the uniform
practical stabilization of feasible pose trajectories via the introduc-
tion of a dynamic oscillator in the control law. The TF approach
provides an important clarification as for the existence of this dy-
namic oscillator that we relate to the existence of specific trans-
verse functions associated with the control vector fields involved
in the system’s dynamic equations and the property of control-
lability that they infer. The motorboat model that we consider is
also more realistic because it includes added mass effects, as well
as sea-currents. As for the second reference, which evokes the TF
function approach in the introduction and explicitly addresses the
case of non-feasible trajectories, it does not clearly account for the
role of this approach in the control design, nor for the origin and
determination of the transverse function that is used. In addition,
the result of uniform ultimate boundedness of the tracking errors
reported in both references is here complemented with a study
of the asymptotic behaviour of the controlled system, with expo-
nential stability of equilibria proven in two nominal operational
conditions, namely position tracking along a straight path and sta-
bilization of a fixed-pose whose orientation is given by the a priori
unknown direction of the sea-current.

The paper is organized as follows. Section 2 provides somenota-
tion, describes the system modelling and explains how transverse
functions that can be used to control the system are derived. Con-
trol design is presented in Section 3 with complementary expla-
nations, along with three propositions that specify the properties
of the proposed controllers in terms of stability and convergence.
In Section 4, simulation results illustrate the performance of the
proposed controllers in the presence of an unknown sea-current.
Concluding remarks are reported in Section 5.

2. Modelling equations

The genericmotorboat here considered is sketched in Fig. 1. The
following notation is used.

• C is the boat’s centre of mass (CoM) and I = {O; i0, j0} is an
inertial frame.

• The boat’s orientation with respect to (w.r.t.) the inertial frame
is given by the angle θ .

• B = {C; i, j} is a body-fixed frame, with unit vectors parallel to
the boat’s principal axes.

• The intensities of the propulsion force and of the actuation
torque used to control the boat’s position and orientation are
denoted respectively as f = (f1 + f2) and τ = 0.5(f1 − f2)d,
with d the distance between the two propulsors.

• The boat’s proper mass and angular inertia about the vertical
axis are denoted as m and Iz respectively. The total mass
matrix including added masses 1mi, 1mj, and 1Iz along the
boat’s principal axes, as well as off-diagonal coupling yaw/sway
coefficientsmc1 and mc2, is denoted as

Ma =


M 0

mc1
0 mc2 I


with M = diag{mi,mj}, mi = m + 1mi, mj = m + 1mj, and
I = Iz + 1Iz . Due to the profiled shape of a standard ship one
can safely assume thatmi < mj.

• ẋc and vc are the vector of coordinates of the sea-current
velocity in I and B respectively. In this work ẋc is assumed
constant.

• v = (vi, vj)
T (resp. vh = v − vc) is the vector of coordinates in

B of the CoM’s velocity w.r.t. I (resp. w.r.t. the water surface).
• C̄ , of coordinates x = (x1, x2)T in I, is the point on the boat’s

longitudinal axis located at the (typically small) distance mc1
mj

from the CoM, i.e. CC̄ =
mc1
mj

i.

• v̄ = (v̄i, v̄j)
T (resp. v̄h = v̄ − vc) is the vector of coordinates

in B of the velocity of C̄ w.r.t I (resp. w.r.t. the water surface).
It is related to the CoM’s velocity according to v̄i = vi and
v̄j = vj +

mc1
mj

ω with ω = θ̇ the boat’s angular velocity.
• The boat evolves in a fluid (water) which exerts on it reaction

manoeuvring forces that are responsible for longitudinal drag
and lateral lift. The vector of coordinates of the resultant of
linear viscous forces, expressed in B, is classically modelled by
fl = −Clv̄h with Cl = diag{cl,i, cl,j}, and cl,i and cl,j denoting
positive coefficients. Similarly, and following a simplified
expression based on the theory of slender bodies immersed
in a fluid, the resultant of reaction forces involving quadratic
terms is modelled by fq = −|v̄h|Cqv̄h with Cq = diag{cq,i, cq,j},
and cq,i and cq,j denoting positive coefficients. These forces are
dissipative in the sense that v̄T

h fl ≤ 0 and v̄T
h fq ≤ 0, so that they

tend to reduce the boat’s kinetic energy. Linear viscous effects
are rapidly dominated by quadratic terms when |v̄h| is not very
small. Other environmental forces exerted on the boat (wind
and waves forces, in particular) are neglected in this work.

• R(θ) is the rotation matrix in the plane of angle θ , and 0m,n is
the null matrix withm lines and n columns.

The following model of the boat’s motion equations, used here
for simulation and control design purposes, relies on a model
derived in Fossen (1994) for surface ships.

Maν + C(ν)ν = U + Uhydro (1)

with ν = (vT
h , ω)T , U = (f , 0, τ )T the vector regrouping the

thrust force and the actuation torque that control the boat’s mo-
tion,Uhydro = ((fl+ fq)T , τl+τq)

T with τl and τq denoting linear and
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