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a  b  s  t  r  a  c  t

In  this  paper,  we demonstrate  that  spectral  enhancement  techniques  can  be configured  to improve  the
classification  accuracy  of a pattern  recognition-based  myoelectric  control  system.  This  is  based  on  the
observation  that, when  the subject  is  at rest,  the power  in  EMG  recordings  drops  to  levels  character-
istic  of  the  noise.  Two  Minimum  Statistics  techniques,  which  were  developed  for  speech  processing,
are  compared  against  electromyographic  (EMG)  de-noising  methods  such  as  wavelets  and  Empirical
Mode  Decomposition.  In  the  cases  of simulated  EMG  signals  contaminated  with  white  noise  and  for  real
EMG signals  with  added  and  intrinsic  noise  the  gesture  classification  accuracy  was  shown  to  increase.
The  mean  improvement  in the  classification  accuracy  is greatest  when  Improved  Minima-Controlled
Recursive  Averaging  (IMCRA)-based  spectral  enhancement  is  applied,  thus  demonstrating  the  poten-
tial  of  spectral  enhancement  techniques  for improving  the performance  of  pattern  recognition-based
myoelectric  control.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Surface Electromyography (EMG) is a non-invasive measure-
ment method of muscle activity that can be used for telehealth
[1] and for prosthesis control [2,3]. The presence of noise [4–11]
such as measurement noise [6,7], power line interference, quanti-
sation noise, ECG and motion artefact [4,5] obscure the information
content of the signal and reduce its usefulness for pattern
recognition-based prosthetic control by causing a reduction in ges-
ture classification accuracy.

Some types of noise can be preventatively reduced by careful
hardware setup: for example, motion artefact can be reduced by
minimising the sensor movement relative to the skin. Once digi-
tised, band pass filtering is used to restrict the frequency content
to the band within which most of the energy of the EMG  resides.
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Notch filtering or adaptive filtering [5] blind rejection [8] or spectral
interpolation [9] can also be performed to remove 50 Hz or 60 Hz
power line interference. ECG can be removed by applying template
methods or moving average filtering [10].

Noise detection and identification methods have been applied to
EMG  signals in order to mitigate the effects of noise that could not
be preventatively removed. The methods were tested by artificially
adding noise to EMG  signals. ECG, motion artefact, Additive White
Gaussian Noise (AWGN), amplifier saturation and power line inter-
ference were added to EMG  in [4,5] to test the feasibility of pattern
recognition. AWGN was used in [11] to assess the robustness of
features and to assess noise reduction techniques such as wavelets
in [12,13].

In this paper, we will demonstrate how two spectral enhance-
ment techniques designed for speech signals can be configured for
EMG  to improve the classification accuracy of pattern recognition:
Minimum Statistics Noise Estimation (MSNE) and Improved Min-
ima  Controlled Recursive Averaging (IMCRA). The techniques are
tested with simulated EMG, real EMG  that is artificially contami-
nated with AWGN and an intrinsically noisy EMG  data set. To assess
the effectiveness of the noise reduction, classification accuracy is
used as a means of evaluating EMG  signal quality: It is asserted here
that if signal quality has been improved, then classification accu-
racy will increase. Three measurements for evaluating EMG  signal
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quality are first examined, which are assessed on the ‘steady state’
parts of the EMG. They are:

a. Maximum Drop in Power Density (DP ratio) is a measurement
between the maximum and minimum energy content of FFT bins.
The threshold value from [14] is 30 dB.

b. The SN ratio is a type of SNR in which the shape of the spectrum is
taken into account. It is calculated based on the assumption that
no EMG  is present in the upper 20% of the frequency range. For
our data sets, which will be discussed in Section 2.1.2, the upper
20% is 800–1000 Hz and 720–800 Hz. According to [15] surface
EMG resides in the band 10–400 Hz so this assumption is valid.
The threshold value for SN ratio from [14] is 15 dB.

c. The  ̋ ratio is an “index of spectral deformation” [14] used to
detect “disturbances” in the EMG  spectrum. The threshold value
from [14] is 1.4.

The only prior instance of the application of spectral enhance-
ment to EMG was spectral subtraction in [16], where the mean
spectrum of the noise is calculated across several ‘noise only’ STFT
windows to account for its variation. The mean noise spectrum
is then subtracted across the STFT windows of the entire signal.
However, the authors were unable to find any prior research in
which spectral enhancement using minimum statistics was  applied
within the EMG  frequency band as a means of noise identification
or reduction.

The organisation of this paper is as follows: myoelectric signals
and the data sets used in the work are introduced in Section 2, EMG
filtering is described in Section 3, pattern recognition is described
in Section 2.3, method in Section 3, results in Section 4, discussion
in Section 5 and conclusions are given in Section 6.

2. Theory

2.1. Surface myoelectric signals

To move the forearm or hand, nerve impulses travel down the
nerve to motoneurons, which interface with the muscles at motor
units. When the motor units are activated, they fire and cause
a potential difference. The activity from single motor unit action
potentials (MUAPs) can be detected by invasive needle sensors, or
EMG from a group of MUAPs can be sensed by an electrode on the
skin’s surface. When detected using the latter, the attenuated sum-
mation of MUAPs within range of the sensor is called the surface
EMG, or sEMG, signal [17]:

y[n] =
R∑

i=1

+∞∑

l=−∞
xil[n − ˚i,l] + v[n] (1)

Y[n] is the measured SEMG signal, R is the number of active
motor units, xik[n] is lth motor unit action potential belonging to
motor unit i, ˚i,l is the occurrence time of xil[n] and v[n] is additive

noise [17]. The STFT of this is the summation of the STFT of the EMG
and additive noise:

Y[f, t] = X[f, t] + V [f, t] (2)

2.1.1. Simulated EMG
Simulated EMG  has mathematical or structural properties simi-

lar in some useful way to real EMG. It is guaranteed to be clean, so it
is suitable for assessing the performance of spectral noise estima-
tors because the exact amount of additive noise can be controlled.
The method from [18] was  used, which is a phenomenological
model [17] that we previously used in [4]. The following transfer
function was  used to generate simulated EMG  [18]:

HEMG(f ) = jKf 2
h

f

(fl + jf )(fh + jf )2
(3)

The parameters fl and fh are used to adjust the shape of the
EMG  spectrum. In this work, the parameters were changed ran-
domly for each simulated gesture, but kept constant during a
gesture to simulate a static contraction. A simulated recording of
a ‘rest-gesture-rest’ was generated of length 15 s that has a ges-
ture of length 5 ± 0.5 s in duration starting between 5 and 10 s into
the simulated recording. An onset and offset were generated by
100-sample ‘ramps’ at either side of the simulated steady-state con-
traction [19]. Finally, Additive White Gaussian Noise (AWGN) was
added to the signal at the required SNR. Fig. 1 (left) shows a clean
EMG  gesture, which has AWGN added (Fig. 1 (centre)) to produce
the signal shown in Fig. 1 (right).

The parameter fl was chosen randomly from the frequency
ranges from 30 to 60 Hz and fh was  randomly 30–100 Hz greater
than fl. The gain factor K was adjusted to make the EMG  power
unity.

2.1.2. Real EMG  data sets
Two data sets of real EMG  were used in this work. Data Set 1 con-

sists of thirty subjects and six different gesture classes (plus rest)
each for four sessions of six trials. Details can be found in [20]. There
are eight bipolar channels, of which the seven lower-arm channels
were used. The bandwidth of the amplifier was 1 Hz–1 kHz and the
data set had been provided with a 60 Hz notch filter applied [20].

Data Set 2 is noisy 16-channel data from five subjects. There
are two sessions for each subject, each consisting of a recording
with 60 gestures. When used in the context of pattern recognition,
one session was  used for training and one for testing. There were
twelve different gestures: all fingers flexion and extension (includ-
ing thumb), as well as thumb opposition and antiopposition. Each
gesture was initiated from rest and executed in random order.

2.2. EMG filtering

EMG  can be measured using high-density sensor arrays [21].
Sensors that either degrade or do not contribute significantly to
classification accuracy can be discarded through a process such as
Sequential Forward Selection [21]. Such spatial filtering cannot be

Fig. 1. The creation of simulated recording of an EMG  corresponding to a gesture is created. The clean EMG, which has well-defined onset, steady-state and offset locations
(left)  has noise (centre) added to it (right). In this example, fl = 59, fh = 129, fs = 2000, SNR = 0 dB. y-Axis units are arbitrary.
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