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a  b  s  t  r  a  c  t

A  two-loop  robust  nonlinear  controller  is  proposed  to deal  with  uncertain  model  parameters  in  HIV
infection  models,  which  are  described  by nonlinear  differential  equations  of  three  state  variables  and
antiretroviral  drugs.  The  treatment  goal  is to suppress  the concentration  of infected  CD4+  T  cells  to  a
target value  using  only  the  measurement  of total  CD4+  T cell  concentration.  The  outer-loop  controller  is
designed  to achieve  the  treatment  goal for the  nominal  HIV infection  model,  while a  nonlinear  disturbance
observer  (DOB)  controller  is  employed  in  the  inner-loop  to compensate  for parameter  uncertainties.  In  the
nonlinear  DOB  controller,  a disturbance  signal,  equivalent  to the  parameter  variation  in  terms  of  effect
on the  output,  is canceled  by its  estimate.  Numerical  simulations  verify  that  the  proposed  controller
achieves  robust  performance  for  reducing  the  concentration  of  infected  CD4+  T cells  even  in  the  presence
of  parameter  uncertainties.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Since the proposal of several mathematical models by Perelson
and Nelson [1] and Nowak and May  [2] to represent the inter-
action of HIV with CD4+ T cells, a variety of research has been
actively conducted by means of the control theory to develop
drug therapies for HIV-infected patients. A control method based
on Jacobian linearization was employed to reduce the viral load
[3]. Using the backstepping method, a nonlinear controller was
designed for better control performance [4]. However, the back-
stepping method usually suffers from the problem of “explosion
of terms” due to the repetitive differentiation of the virtual input
[5]. Treatment scheduling based on model predictive control (MPC)
was also developed for the immune system to suppress the virus [6].
An output feedback MPC  approach was then presented to handle
cases where the measurements of all state variables are not avail-
able [7]. In contrast to the two works based on the standard MPC
framework [6,7], an offset-free MPC  algorithm was developed to
cope with model errors using the state augmentation approach [8].
Although simulation showed that the treatment goal was  achieved
through the MPC  algorithm, the stability is not theoretically guar-
anteed in the presence of model errors. Feedback linearization has
been employed to control the viral load [9,10], but this approach
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generally does not work properly in the presence of model errors, as
it relies on the exact cancelation of nonlinear terms. A system the-
oretic approach was  presented to treat HIV-infected patients via
analysis of bifurcation and stability [11]. Thymic recovery in HIV
patients was  also studied using an optimal control approach [12].

The parameter values of an HIV-infection model depend on
the patient’s infection condition [13,14]. That is, parameter uncer-
tainties (or parameter variations) may  exist in the model. In the
aforementioned references, excluding [8], however, various treat-
ment algorithms have been proposed without considering any
robustifying control term. As a result, they are unlikely to achieve
the treatment goal in the presence of large uncertainties although
they may  work well for small uncertainties. Besides, many of the
reported methods [3,4,6,9,10,12] require the measurements of all
state variables to implement the control law, while such measure-
ments are not feasible in real clinical situations. Therefore, it would
be worthwhile to find the drug efficacy for the treatment of HIV
infections in the presence of parameter uncertainties without hav-
ing to measure all state variables.

In this paper, a two-loop robust nonlinear controller is pro-
posed for HIV infection models with parameter uncertainties, even
when not all state variables are available for feedback. Many ref-
erences [7,8,13–16] employed the total concentration of CD4+ T
cells and the viral load as measurable state variables. As will be
seen later, on the other hand, the proposed controller requires only
the measurement of the total concentration of CD4+ T cells. Thus,
the treatment goal of this paper is to suppress the concentration
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Fig. 1. Two-loop structure of the proposed controller. The inner-loop controller
makes the shaded block behave as if it were the nominal HIV infection model. Here,
u,  y, and ur represent the drug (RTI) efficacy, the total concentration of CD+4 T cells,
and the output signal of the nominal controller, respectively.

of infected CD4+ T cells to the target value using only the total
concentration of CD4+ T cells. To achieve the treatment goal in
the presence of parameter uncertainties, a nonlinear controller
with a two-loop structure is proposed, as shown in Fig. 1. The
outer-loop controller is designed such that the treatment goal
can be achieved for the nominal HIV infection model. That is,
parameter uncertainties are not taken into account in the design
of the outer-loop controller. In this regard, the outer-loop con-
troller is also referred to as the nominal controller. The inner-loop
controller, on the other hand, is in charge of compensating for
parameter uncertainties. The nonlinear disturbance observer (DOB)
controller [17] is adopted as the inner-loop controller. In the
nonlinear DOB controller, a disturbance signal, equivalent to the
parameter variation in terms of effect on the output, is can-
celed by its estimate. As a result, the shaded block in Fig. 1
becomes approximately equivalent to the nominal HIV infection
model. Therefore, even in the presence of parameter uncertain-
ties, the proposed two-loop controller achieves almost similar
treatment performance as that of the nominal closed-loop sys-
tem.

The proposed controller is designed as follows. First, a state
feedback controller is designed using the nominal model under
the assumption that all state variables are measurable. Second, a
nonlinear state observer is designed based on the nominal model
to obtain state estimates only from the measurement of total
CD+4 T cell concentrations. An output feedback controller is then
constructed by combining the state feedback controller and the
nonlinear state observer. This output feedback controller plays
the role of the outer-loop controller. Finally, the nonlinear DOB
controller is designed to make the uncertain closed-loop system
behave like the nominal system.

The paper is organized as follows. In Section 2, a mathemati-
cal model of HIV infection therapy is presented, and the treatment
goal of the paper is stated. Under the assumption that all model
parameters are known exactly, the nominal controller is designed
in Section 3. In Section 4, the nonlinear DOB controller is designed
to cope with uncertain model parameters. To illustrate the perfor-
mance of the proposed controller, various simulation results are
presented in Section 5. Finally, a conclusion is offered in Section 6

2. Mathematical model of HIV infection therapy

A deterministic model of HIV infection therapy can be expressed
by the following differential equations [3,9,10,13,14,16]:

ẋ1 = s − dx1 − ˇ(1 − u)x1x3

ẋ2 = ˇ(1 − u)x1x3 − �x2

ẋ3 = k(1 − uP)x2 − cx3

(1)

where x1, x2 and x3 represent the concentrations of healthy CD4+
T cells, infected CD4+ T cells and free virus, respectively. Healthy
cells are produced at the rate s, and die naturally at the rate d. They
are infected at the rate  ̌ through interaction with the virus. The

Table 1
Nominal values of model parameters.

Parameter Value Unit

s 295 cells/(mm3× day)
d  0.182 1/day

 ̌ 3.89 ×10−6 mL/(copy × day)
� 1.02 1/day
k 5890 copies × mm3/(cell × mL  × day)
c  24 1/day

infected cells then die at the rate �. Virus particles are created at
the rate k, and are cleared at the rate of c per cell. The nominal
values of model parameters for (1) are listed in Table 1. (Parameter
values are quoted from reference [14], which are estimated from
actual patients.)

Two kinds of antiretroviral drugs are involved in the model
equations to treat HIV infection: reverse transcriptase inhibitors
(RTIs) and protease inhibitors (PIs). The efficacies of these two  drugs
are denoted by u and uP, which range between 0 (no medication)
and 1 (full medication). As assumed in references [3,9,11], uP = 0 is
used in this paper. System (1) can then be rewritten as

ẋ1 = s − dx1 − ˇ(1 − u)x1x3

ẋ2 = ˇ(1 − u)x1x3 − �x2

ẋ3 = kx2 − cx3

(2)

As mentioned previously, the model parameters may be uncer-
tain during the entire treatment period. Therefore, it is assumed in
this research that ˇ, k and c are unknown constants, while the rest
of the parameters (s, � and d) are known. Under this assumption,
the HIV infection model is modified as follows:

ẋ1 = s − dx1 − ˜̌ (1 − u)x1x3

ẋ2 = ˜̌ (1 − u)x1x3 − �x2

ẋ3 = k̃x2 − c̃x3

(3)

Here, ˜̌ , k̃ and c̃ are used instead of ˇ, k and c to indicate that these
parameters are unknown constants.

The equilibrium point of the nominal model is required in the
design of the controller. For a given r0(> 0), the equilibrium point
x∗ = (x∗

1, x∗
2, x∗

3) should be computed such that x∗
2 = r0. For conve-

nience sake, system (2) is rewritten as

ẋ = F(x, u) (4)

where x : = [x1, x2, x3]T. Solving F(x*, uss) = 0 with x∗
2 = r0 results in

x∗
1 = s − �r0

d
, x∗

3 = k

c
r0 (5)

uss = 1 − �dc

ˇk(s − �r0)
(6)

If no drug treatment is performed, i.e. u = 0, the nominal model
(2) has the following two equilibrium points:(

s

d
, 0, 0

)
=: Xh,

(
�c

ˇk
,

s

�
− dc

ˇk
,

ks

c�
− d

ˇ

)
=: Xinf

Using the values of the model parameters in Table 1, we obtain

Xh = [1621,  0, 0]T ,

Xinf = [1068,  98.57,  24192]T
(7)

Obviously, Xh and Xinf correspond to healthy and infected persons,
respectively. In simulation studies, Xinf will be used as the initial
condition.

This paper aims to design a controller to reduce the viral
load by 90% in eight weeks after treatment, and to suppress it
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