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a b s t r a c t

This work deals with the input–output finite-time stabilization problem for a class of nonlinear systems
by employing sliding mode control (SMC) approach. A suitable SMC law is designed to ensure that the
state trajectories can be driven onto the specified sliding surface during the assigned finite-time interval.
Moreover, some parameters-dependent sufficient conditions are derived such that the input–output
finite-time stability (IO-FTS) during both reaching phase and sliding motion phase are attained. Simulation
results are provided to illustrate the proposed approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Input–output finite-time stability (IO-FTS) of a system concerns
the quantitative behavior of the output variables over an assigned
finite-time interval. That is, a system is said to be input–output
finite-time stable if its output (weighted) norm does not exceed an
assigned threshold β (i.e., an explicit output constraint condition)
during the specified time interval [0, T ] (Amato, Ambrosino, &
Cosentino, 2010; Amato, Carannante, & de Tommasi, 2012, 2014;
Song, Niu, & Jia, 2015).

Sliding mode control (SMC), as an effective robust control
strategy for systems subjected to parameter uncertainties and
external disturbances, has attracted considerable attention, see
Basin and Rodríguez-Ramírez (2011), Chen, Niu, and Zou (2013),
Wu, Su, and Shi (2012), Xia, Lu, and Zhu (2013) and the
references therein. However, it should be pointed out that, in
almost all aforementioned works on SMC, the behavior of sliding
mode dynamics was considered within a sufficiently long (in
principle infinite) time interval and there was no any constraint
on transient dynamics. Apparently, this case is not always
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true in some practical applications, such as when considering
IO-FTS, in which the specified finite-time interval T and the
explicit output constraint scalar β should be taken into account
simultaneously. Specifically, the following two questions should
be answered for the input–output finite-time stabilization via
SMC:

(1) For any specified finite (possibly short) interval T , is it possible
to design a SMC law such that the state trajectories can be
driven onto the sliding surface in a finite-time T ∗ with T ∗

≤ T ;
if so, how to design?

(2) For an assigned threshold β , how to guarantee that the output
(weighted) norm does not exceed β during both reaching phase
and sliding motion phase?

In this technical communique, we focus on addressing the
input–output finite-time stabilization problem for a class of
uncertain nonlinear systems by using SMC approach. The above
two questions will be answered in the following design (see
Theorems 1 and 2, respectively).

Notation. λmax(·) denotes the maximum eigenvalue of the cor-
responding matrix. ∥ · ∥ and | · | denote, respectively, the Eu-
clidean norm and 1-norm of a vector (sum of absolute values)
or its induced matrix norm. For a real matrix, AT represents the
transpose of A, and we denote He{A} = A + AT. The shorthand
‘‘diag{·}’’ denotes a block diagonal matrix. In symmetric block ma-
trices, the symbol ‘‘⋆’’ is used as an ellipsis for terms induced for
symmetry.
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2. System descriptions and definition

Consider the nonlinear system described by

Σ :


ẋ(t) = f (x(t), w(t)) + Bu(t),
y(t) = Cx(t), (1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the input; w(t) ∈ Rr

is the disturbance input. The unknown function f (x(t), w(t)) sat-
isfies the conic sector constraint (ElBsat & Yaz, 2013):f (x(t), w(t)) −


Ā(t)x(t) + Fw(t)


≤

Ār(t)x(t) + Frw(t)
 , (2)

where Ā(t) = A + A∆(t) and Ār(t) = Ar + Ar∆(t). Matrices A, B,
C , F , Ar , and Fr are assumed to be known. A∆(t) and Ar∆(t) are pa-
rameter uncertainties satisfying the following norm-bounded con-
dition:
A∆(t) Ar∆(t)


=


M Mr


E(t)N, (3)

where M , Mr and N are known real matrices and E(t) is unknown
with ∥E(t)∥ ≤ 1.

By using the conic-type constraint condition (2), the system
dynamic (1) can be rewritten as

Σ̄ :


ẋ(t) = Ā(t)x(t) + Fw(t) + g(x(t), w(t)) + Bu(t),
y(t) = Cx(t), (4)

with g(x(t), w(t)) = f (x(t), w(t))−

Ā(t)x(t) + Fw(t)


. It is easily

shown that g(x(t), w(t)) satisfies

∥g(x(t), w(t))∥2
≤ ∥Ār(t)x(t) + Frw(t)∥2. (5)

Definition 1 (IO-FTS Amato et al., 2010, 2012, 2014). Given a time
interval [t0, t1], an explicit output constraint scalar β > 0, distur-
bance signals W defined over [t0, t1], a weighted matrix R > 0.
System Σ̄ with u(t) = 0 is said to be IO-FTS with respect to
(β, [t0, t1], R, W) if, under zero initial condition x(t0) = 0, it holds
that

w(t) ∈ W ⇒ yT(t)Ry(t) ≤ β, t ∈ [t0, t1]. (6)

In this work, we consider the class of norm bounded square
integrable signals over [0, T ], defined as follows:

W ,


w(·) ∈ L2,[0,T ] :

 T

0
wTwdt ≤ δ


, (7)

with a known scalar δ > 0.

3. Sliding surface design

In this work, our aim is to cope with the IO-FTS problem of SMC
for nonlinear system Σ̄ , wherein the sliding function s(t) is chosen
as

s(t) = Lx(t) −

 t

0
L(A + BK)x(τ )dτ , (8)

where the matrix K will be designed later (in Theorem 2), and the
matrix L is chosen so that LB is nonsingular, which can be attained
by choosing L = BTX with X > 0, since B is assumed to be of full
column rank.

4. Reachability with T ∗ ≤ T

In this section, a suitable sliding mode controller is designed
to drive the state trajectories onto the specified sliding surface
s(t) = 0 in a finite time T ∗ and then are maintained there over
the rest time interval [T ∗, T ].

Theorem 1. Consider system (Σ) in (1)–(3). The reachability of the
specified sliding surface (8) can be ensured in a finite time T ∗ with
T ∗

≤ T by the SMC law:

u(t) = Kx(t) − η(t)sgn(s(t)), (9)

where the robust term η(t) is given by

η(t) = ς + v∥w(t)∥ + d∥x(t)∥, (10)

in which v = ∥(BTXB)−1BTX∥(∥F∥ + ∥Fr∥), d = ∥(BTXB)−1

BTX∥(∥M∥ ∥N∥ + ∥Mr∥ ∥N∥ + ∥Ar∥), and ς > 0 is an adjustable
parameter satisfying

ς ≥
λmax[(BTXB)−1

]

T
∥BTXx(0)∥. (11)

Proof. Choose the Lyapunov function as U(s) =
1
2 s

T(BTXB)−1s,
with X > 0. By considering expressions (3), (5) and (8), we have

U̇(s) = sT(BTXB)−1
[BTX(A∆ − BK)x + BTXBu

+ BTXFw + BTXg(x, w)]

≤ ∥s∥ (v∥w∥ + d∥x∥) − sTKx + sTu. (12)

Substituting (9), (12) and noting ∥s∥ ≤ |s|, we have

U̇(s) ≤ −ς∥s∥ ≤ −
ς

γ̃


U(s), (13)

where γ̃ =


λmax[(BTXB)−1]

2 > 0.
It is easily obtained from (13) that there exists a time T ∗

≤
2γ̃
ς

√
U(0) such that U(s) = 0, and consequently s(t) = 0, for

t ≥ T ∗.

Furthermore, by the fact that U(0) ≤
λmax


(BTXB)−1


2 ∥s(0)∥2, it

yields

T ∗
≤

λmax[(BTXB)−1
]

ς
∥BTXx(0)∥. (14)

By considering (11) for ς , we have from (14) that T ∗
≤ T . This

means that, for any given finite-time T , the state trajectories can
be driven onto the predefined sliding surface s(t) = 0 in a finite
time T ∗ with T ∗

≤ T . �

Remark 1. It should be pointed out that the designed SMC law
(9)–(10) depends on the assigned time T via the selection criterion
(11) on the scalar ς . This strategy ensures that the states can be
driven onto the specified sliding surface in the interval [0, T ∗

]with
T ∗

≤ T . The selection on ς in this work is different from some
existing works, e.g., Chen et al. (2013) and Wu et al. (2012), in
which similar parameter was selected arbitrarily.

5. SMC synthesis with IO-FTS

5.1. IO-FTS over reaching phase [0, T ∗
]

In the sequel, it will be shown that the closed-loop system is
IO-FTS during reaching phase, i.e., in the time interval [0, T ∗

]. By
substituting SMC law (9) into (4), the closed-loop system over
[0, T ∗

] is obtained by:

Σ̃[0,T∗] :


ẋ = Âx + Fw + g(x, w) − Bηs,
y = Cx,

(15)

where Â = Ā + BK and ηs , η · sgn(s).

Lemma 1. Given a feasible scalar α > 0. The resulting closed-loop
system Σ̃[0,T∗] in (15) is IO-FTS with respect to (β, [0, T ∗

], R, W), if
there exist matricesK ∈ Rm×n, W > 0 and P > 0, and scalars ϵ > 0
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