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a b s t r a c t

An approach to state estimation for discrete-time linear time-invariant systems with measurements that
may be affected by outliers is presented by using only a batch ofmost recent inputs and outputs according
to a moving-horizon strategy. The approach consists in minimizing a set of least-squares cost functions
in which eachmeasure possibly contaminated by outlier is left out in turn. The estimate that corresponds
to the lowest cost is retained and propagated to the next time instant, where the procedure is repeated
with the new information batch. The stability of the estimation error for the proposed moving-horizon
estimator is proved under mild conditions concerning the observability of the free-noise state equation
and the selection of a tuning parameter in the cost function. Robustness is guaranteed with sufficiently
large outliers. The effectiveness of the proposed method as compared with the Kalman filter is shown by
means of a numerical example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In numerous applications there exists the problem of dealing
with large deviations in the measurements because of sensor
malfunctions, wrong replacement of measures, or large non-
Gaussian noises. These abnormal signals are usually called
outliers in many different fields such as process control (Pearson,
2002), heart surgery (Ortmaier, Groger, Boehm, Falk, & Hirzinger,
2005), intrusion detection (Zhang, Zulkernine, & Haque, 2008),
environmental monitoring (Garces & Sbarbaro, 2011), positioning
(Fallahi, Cheng, & Fattouche, 2012), cloud management (Meng
& Liu, 2013), and fault detection (Ferdowsi, Jagannathan, &
Zawodniok, 2014). Various filtering methods have been proposed
to attenuate or detect outliers (see, e.g., Gandhi & Mili, 2010 and
the references therein). In this paper, a more general problem
is addressed that consists in estimating the state variables of a
linear systembymeans ofmeasures possibly corrupted by outliers.
The estimation is performed by using a moving-horizon approach,
which will be set in such a way to make it robust to outliers.

✩ The material in this paper was partially presented at the 53rd IEEE Conference
on Decision and Control, December 15–17, 2014, Los Angeles, CA, USA. This paper
was recommended for publication in revised form by Associate Editor Giancarlo
Ferrari-Trecate under the direction of Editor Ian R. Petersen.

E-mail addresses: alessandri@dime.unige.it (A. Alessandri),
awawdeh@dime.unige.it (M. Awawdeh).

The problem of estimating the state variable of a linear system
with output contaminated by outliers can be treated by using the
Kalman filter with some convenient adjustment. As is well-known,
under the assumption that initial state and disturbances are white
Gaussian stochastic processes, the best estimator in the sense of
the minimization of the expected quadratic estimation error is the
Kalman filter. Such an estimator is recursive in that the new out-
put is processed by iterating the estimate update based on the cur-
rent residual, i.e., the output error given by the difference between
the measure and its prediction obtained from the last state esti-
mate. Thus, one may check abnormal residuals via a threshold test
to skip the Kalman estimate update with such residuals. This pro-
cedure can be motivated from a theoretical point of view by using
the maximum likelihood criterion (Alessandri & Awawdeh, 2014).

The first ideas about what is currently denoted as moving-
horizon estimation (MHE) are presented in Jazwinski (1968). MHE
consists in performing state estimation by using a limited amount
of most recent information. The state estimates are obtained by
minimizing a least-squares cost functionwith a batch of the inputs
and outputs according to a sliding-horizon strategy. Constraints
on the state variables may be easily taken into account since the
optimization is carried on line. The first results on MHE for linear
systems (Alessandri, Baglietto, & Battistelli, 2003; Rao, Rawlings, &
Lee, 2001) have been extended to nonlinear (see, e.g., Alessandri,
Baglietto, & Battistelli, 2008; Alessandri, Baglietto, Battistelli, &
Gaggero, 2011; Fagiano & Novara, 2013; Guo & Huang, 2013; Rao,
Rawlings, &Mayne, 2003) and large-scale systems (Farina, Ferrari-
Trecate, & Scattolini, 2010).
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Outliers are particular type of uncertainty that prevent an
estimator from ensuring guaranteed performances (Matasov &
Samokhvalov, 1996). Robustness is thus a fundamental require-
ment in the design of filters for uncertain systems. A method to
enhance the robustness of the Kalman filter in the presence of out-
liers is presented in Gandhi and Mili (2010). In Akkaya and Tiku
(2008) and Shi, Chen, and Shi (2013) statistical tests are proposed
that are less sensitive to abnormal noises. For the same reasons,
an l1 loss function is more suitable for the purpose of identification
withmeasures affected by outliers (Lauer, Bloch, & Vidal, 2011; Xu,
Bai, & Cho, 2014). The reader is referred to Rousseeuw and Leroy
(1987) for a complete review of the most important methods of
regression that account for robustness to outliers.

Based on the preliminary results by Alessandri and Awawdeh
(2014), here we focus on MHE for linear discrete-time systems
with measurements contaminated by outliers. Toward this end,
first we will prove the stability of the estimation error and,
second, the robustness to outliers. Conditions for the stability
of moving-horizon estimators for uncertain linear systems are
reported in Alessandri, Baglietto, and Battistelli (2012), where
explicit bounding sequences are provided thanks to the adoption
of worst-case cost functions. Unfortunately, such cost functions
are not helpful in case of measurements affected by outliers, thus
a different criterion is proposed here. More specifically, at each
time instant we separately minimize a set of least-squares cost
functions,where themeasurements that can be affected by outliers
are left out in turn. Then, we choose the minimizer associated
with the lowest cost, and this estimate is propagated ahead to the
next time instant according to the usual moving-horizon strategy.
Such an estimation criterion ensures robustness to outliers of
sufficiently large amplitude.

The paper is organized as follows. In Section 2, the proposed
MHE method is described. Stability and robustness properties are
illustrated in Sections 3 and 4, respectively. In Section 5, simulation
results are presented and discussed. Finally, the conclusions are
drawn in Section 6.

Let N := {0, 1, 2, . . .}. The minimum and maximum eigen-
values of a real, symmetric matrix P are denoted by λmin(P) and
λmax(P), respectively; in addition, P > 0 means that it is positive
definite. Given a generic matrix M , ∥M∥ :=


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1/2
=
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2. MHE with measures corrupted by outliers

Let us consider the discrete-time linear system

xt+1 = A xt + B ut + wt (1a)
yt = C xt + vt (1b)

where t = 0, 1, . . . is the time instant, xt ∈ Rn is the state vector,
ut ∈ Rm is the control vector, wt ∈ Rn is the system noise vector,
yt ∈ R is the measure, and vt ∈ R is the measurement noise.

As to the system disturbance, wt is supposed to be ‘‘small’’ as
compared with the dynamics (i.e., bounded and taking zero or
around zero values). In other words, we assume the following.

Assumption 1. There exists rw ∈ (0, ∞) such that, for all t =

0, 1, . . . , ∥wt∥ ≤ rw .

The measurement noise, instead, is ‘‘small’’ except on rare
occurrences. More specifically, we assume the following.

Assumption 2. There exist rv ∈ (0, ∞), M > rv , and a nonnega-
tive, strictly increasing sequence {t̄i} such that, for all t = 0, 1, . . .
and i = 0, 1, . . ., (a) |vt | ≤ rv for t ∉ {t̄i}, (b) |vt̄i | ∈ (rv,M].

The assumption abovemeans that themeasurement noisesmay
take abnormal but bounded values at certain instants t̄i since, of
course,M is much larger than rv . Such time instants correspond to
the outliers and they are unknown. Indeed, we suppose to know rw
and rv , and the reader is referred toMilanese andNovara (2004) for
an overview of the methods to estimate such parameters together
with the underlying model. As will be clearer later, the knowledge
ofM is not required since it would be sufficient to assume that the
outliers, though large, are bounded. In Section 4, a lower bound
on the absolute value of outliers will be provided in such way that
robustness is ensured for the proposed MHE method.

The moving-horizon approach consists in deriving a state
estimate at the current time t by using the information given by
yt−N , yt−N+1, . . . , yt , ut−N , ut−N+1, . . . , ut−1 with the integer N ≥

1. More specifically, we aim to estimate xt−N , . . . , xt on the basis
of such information and of a ‘‘prediction’’ x̄t−N of the state xt−N at
the beginning of the moving window. We denote the estimates of
xt−N , . . . , xt at time t by x̂t−N|t , x̂t−N+1|t , . . . , x̂t|t , respectively.

As compared with the previous literature on MHE, here we
consider explicitly the occurrence of outliers in the measures. In
such a setting, a natural criterion to derive the estimator consists in
resorting to a least-squares approach by explicitly trying to reduce
the effect of the outliers. Though in principle we can deal with an
arbitrary number of outliers, we restrict our attention to the case
of at most only one measurement affected by outlier in the batch
of measures included in the sliding window, thus assuming what
follows.

Assumption 3. The sequence {t̄i} is such that infi∈N

t̄i+1 − t̄i


>

N + 1.

If an outlier corrupts the kthmeasure of the batch 1, 2, . . . ,N+

1, a least-squares cost function that leaves out such a measure is

Jkt

x̂t−N


= µ ∥ x̂t−N − x̄t−N ∥

2
+ αk

t
i=t−N

i≠t−N+k−1


yi − Cx̂i

2 (2)

for k = 1, 2, . . . ,N + 1, where µ ≥ 0 and αk > 0. The cost (2) is
to be minimized together with the constraints

x̂i+1 = Ax̂i + Bui, i = t − N, . . . , t − 1. (3)

If no outlier affects the measures of the batch, we may use all of
them:

J0t

x̂t−N


= µ∥x̂t−N − x̄t−N∥

2
+ α0

t
i=t−N


yi − Cx̂i

2 (4)

where α0 > 0. Of course, also the minimization of (4) has to
be performed with the constraints (3). In practice, at each time
t = N,N + 1, . . . we have to solve N + 2 problems given by

min
x̂∈Rn s.t.
(3) holds

Jkt

x̂

, k = 0, 1, . . . ,N + 1
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