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ABSTRACT

Lagrangian duality in mixed integer optimization is a useful framework for problem decomposition and
for producing tight lower bounds to the optimal objective. However, in contrast to the convex case, it
is generally unable to produce optimal solutions directly. In fact, solutions recovered from the dual may
not only be suboptimal, but even infeasible. In this paper we concentrate on large scale mixed-integer
programs with a specific structure that appears in a variety of application domains such as power systems
and supply chain management. We propose a solution method for these structures, in which the primal
problem is modified in a certain way, guaranteeing that the solutions produced by the corresponding dual
are feasible for the original unmodified primal problem. The modification is simple to implement and the
method is amenable to distributed computation. We also demonstrate that the quality of the solutions
recovered using our procedure improves as the problem size increases, making it particularly useful for
large scale problem instances for which commercial solvers are inadequate. We illustrate the efficacy of
our method with extensive experimentations on a problem stemming from power systems.
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1. Introduction

In this paper we investigate mixed-integer optimization
problems in the form

minimize E ¢ X
X

icl

subject to ZH,-xi <b (#)
iel
xieX; Viel.

We refer to b € R™ as the resource vector, and to the sets X; as
the subsystems. We assume that each of the sets X; is a non-empty,
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compact, mixed-integer polyhedral set that can be written as
Xi = {XERri x ZF |A1‘X§di},

withA; € R™*" and d; € R™. We further assume that the problem
& is feasible and that the total number of subsystems |I| is greater
than the length m of the resource vector. Our principal interest is
in large-scale optimization problems, i.e. those for which |I| > m,
while remaining finite.

Problem . can be viewed generically as modeling any problem
for which a large number of subproblems defined on the domains
X;, whose description can include integer variables, are coupled
through a small number of complicating constraints ) _,_; Hix; < b.
These coupling constraints determine the limits on the available
resources to be shared among the subsystems. Simple examples
of problems in this form include classical combinatorial programs
such as the multidimensional knapsack problem, in which X; =
{0, 1}, and ¢; > 0, H; > 0 (Wilbaut, Hanafi, & Salhi, 2008).

More complicated instances of problems in the form %, with
more detailed models for the subsystems X;, arise in a variety of
contexts. In power systems, scheduling the operation of power
generation plants (Yamin, 2004) is a decision problem in which
the subsystems are the generating units, integer variables in the
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local models arise due to, e.g., start-up and shut-down costs,
and the coupling constraints are related to the requirement that
generation must match load. In supply chain management, models
fitting & appear in the problem of partial shipments (Dawande,
Gavirneni, & Tayur, 2006; Vujanic, Esfahani, Goulart, & Morari,
in press-b). Portfolio optimization for small investors, for which
mixed-integer models have been proposed, is another example
application (Baumann & Trautmann, 2013). Finally, some sparse
problems that do not naturally possess the structure of & can
be reformulated to fit our framework by appropriately permuting
rows and columns of the constraints matrix; Bergner et al. (2011)
propose a method to automate this procedure.

A direct solution of & is typically problematic when the prob-
lem is very large, since the problem amounts to a mixed-integer
linear program of possibly very large size. As a result, the Lagrange
dual of & is often taken as a useful alternative, because the result-
ing dual problem is separable in the subsystems despite the pres-
ence of the complicating constraints. When this dual problem is
solved by an iterative method, e.g. using the subgradient method
(Bertsekas, 1999), a candidate (primal) solution to & can be com-
puted at each iteration.

For problems affected by non-zero duality gap such as &, how-
ever, this approach suffers from a major drawback. Namely, any
guarantee about the properties of these candidate solutions is lost.
Even at the dual optimal solution, the associated candidate primal
solutions may be suboptimal and can even be infeasible.

The principal goal of this paper is to propose a new solution
method for problem J that preserves the attractive features of
solution via the Lagrange dual, while at the same time protecting
the recovered primal solutions from infeasibility.

Literature. Lagrangian relaxation for mixed integer programs
was first introduced by Held and Karp (1970), and many of
its theoretical properties were described in Geoffrion (1974).
Properties of the inner solutions in the convex case are well known
(Rockafellar, 1997, Thm. 28.1). It is also well known that in general
these properties are lost in the mixed-integer case (Bertsekas,
1999, Section 5.5.3). Because of this, primal recovery methods
based on Lagrangian duality are often two-phase schemes in which
an infeasible solution is found through duality in the first stage,
and in the second stage it is rectified into a feasible one using
heuristics, see, e.g., Bertsekas, Lauer, Sandell, and Posbergh (1983)
and Redondo and Conejo (1999).

Duality for problems specifically in the form /> has been studied
at least as early as in Aubin and Ekeland (1976), where some of
its special features were first characterized. In particular, it was
noted that the duality gap for this program structure decreases
in relative terms as the problem increases in size, as measured
by the cardinality of I. We will show that the mechanism behind
this vanishing gap effect can also be used to recover “good” primal
solutions for the mixed-integer program & directly from the dual,
in a way that resembles the convex (zero gap) case.

In practical applications, this behavior of the duality gap has
been observed in Bertsekas et al. (1983) in the context of unit
commitments for power systems. In this case it is exploited in an
algorithm that provides solutions to the extended master problem,
but no connection to the solutions of the inner problem is provided.
It also appears in the multistage stochastic integer programming
literature (Birge & Dempstert, 1996; Caroe & Schultz, 1999), where
it is used to gauge the strength of the Lagrangian relaxation, but in
which no relations to primal solutions are drawn. Another domain
in which diminishing gap has been used is in communications,
more precisely in optimization of multicarrier communication
systems (Yu & Lui, 2006). However, in this case non-convexity is
in the objective function rather than due to the presence of integer
variables.

Current contribution. In this paper we further investigate duality
for programs structured as > and focus on the primal solutions
recovered at the dual optimum.

e We provide a new relation between the optimizers of a con-
vexified form of > and the solutions obtained from the dual
problem. This relation holds under mild conditions that are
commonly satisfied in practice.

e Using this relation we can bound the magnitude of the con-
straint violations of the solutions recovered from the dual. In
light of this bound, we propose a new solution method which is
guaranteed to produce feasible solutions for 5. The method is
based on an appropriate contraction of the resources b.

e We also provide a performance bound of the solutions recov-
ered, which indicates that their quality improves as the prob-
lem size increases. For particular structures, arising e.g. from
underlying physical networks, we refine our theoretical results
to improve the performance of the method.

From a practical point of view, we note that our proposed pro-
cedure is straightforward to implement and is amenable to dis-
tributed computation. The performance bound indicates that the
method is particularly attractive for large problem instances, for
which generic purpose solvers may be inadequate. We show that
the theoretical results are effective in practice via extensive nu-
merical experiments on difficult problems stemming from the field
of power systems control. Our method substantially outperforms
commercial solvers on these problems. The limitations of the pro-
posed method, as well as ideas to mitigate them, are also discussed
in the paper.

Structure of the paper. The paper is structured as follows: in
Section 2 we review some of the known results concerning duality
for the specific structure of 2, and we provide a new result related
to the primal solutions recovered from the dual. In Section 3 we
propose a new method for primal solution recovery, and provide
performance bounds for these solutions. We also give some results
on how to further improve the solutions’ quality in some special
cases. In Section 4 we verify the efficacy of our proposed method
on a difficult optimization problem stemming from power systems,
and in Section 5 we conclude the paper.

Notation. Given some optimization problem 4, we denote with
J3, its optimal objective and with J,(x) the performance of the
solution x with respect to the objective of 4. For a given set X,
we denote by conv(X) its convex hull and by vert(X) the set of
vertices of conv(X). With “>" we always intend component-wise
inequalities (between vectors or matrices), and with ® we indicate
the cartesian product of sets. The support of a vector supp(x) is
the set of indexes of the non-zero elements: supp(x) = {i : x; #
0}, while (x)™ is the projection of x onto the positive orthant,
ie, (x)T = max(0, x). For the specific structure of #, we use
the overbar symbol to indicate quantities related to the contracted
version of #, as introduced in Section 3. Thus, for instance, & is
the contracted form of & and D is its dual. We use parenthesis to
avoid confusing the sub- and superscripts, e.g., we denote by (x»);
the part of x» related to subproblem i € I of problem #. Finally,
we use the superscript H* to denote the kth row of matrix H.

2. Duality for problem &

Consider the dual function d : R™ — R of problem 2, defined
as

d()\.) = njel)?(Z Cl-TX,' + )\T<Z Hix; — b)),
X iel iel

and then associate to this function the optimization problem

—2"h in (¢, x; + A THix;
{Sgp +Z:mlxn (60 + 2 Thix) (D)

s.t. A >0.
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