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a b s t r a c t

This paper investigates 2D mixed continuous–discrete-time systems whose coefficients are polynomial
functions of an uncertain vector constrained into a semialgebraic set. It is shown that a nonconservative
linear matrix inequality (LMI) condition for ensuring robust stability can be obtained by introducing
complex Lyapunov functions depending polynomially on the uncertain vector and a frequency.Moreover,
it is shown that nonconservative LMI conditions for establishing upper bounds of the robust H∞ and
H2 norms can be obtained by introducing analogous Lyapunov functions depending rationally on the
frequency. Some numerical examples illustrate the proposed methodology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The study of 2D mixed continuous–discrete-time systems has
a long history, with some early works such as Fornasini and
Marchesini (1978) and Roesser (1975) introducing basic models,
systems theory and stability properties. Applications of these
systems can be found in repetitive processes (Rogers & H, 1992),
disturbance propagation in vehicle platoons (Fornasini & Valcher,
1997), and irrigation channels (Knorn & Middleton, 2013).

Researchers have investigated several fundamental properties
of 2D mixed continuous–discrete-time systems, in particular
stability, for which key contributions include Bouagada and Van
Dooren (2013), Chesi and Middleton (2014a), Galkowski, Paszke,
Rogers, Xu, and Lam (2003), Kar and Singh (2003), andRogers andH
(1992). Other fundamental properties that have been investigated
in 2Dmixed continuous–discrete-time systems are theH∞ andH2
norms, for which the contributions include Chesi and Middleton
(2015), Paszke, Galkowski, Rogers, and Lam (2008) and Paszke,
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Rogers, and Galkowski (2011) where conditions based on linear
matrix inequalities (LMIs) have been provided. The reader is also
referred to Li, Gao, and Wang (2012) and Li, Lam, Gao, and Gu
(2015) for related contributions in other areas of 2D systems.

However, these conditions cannot be used whenever the ma-
trices of the model are affected by uncertainty. In fact, in such
a case, one should repeat the existing conditions addressing the
uncertainty-free case for all the admissible values of the uncer-
tainty. Clearly, this is impossible since the number of values in a
continuous set is infinite and one cannot just consider a finite sub-
set of values such as the vertices in the case this set is a polytope.
It should be mentioned that various methods have been proposed
in the literature for stability and performance analysis of 1D sys-
tems affected by uncertainty, such as Aguirre, Garcia-Sosa, Leyva,
Solis-Daun, and Carrillo (2015), Aguirre, Ibarra, and Suarez (2002),
Bliman (2004), Chesi (2005, 2013), Oliveira and Peres (2007) and
Scherer and Hol (2006).

This paper investigates 2D mixed continuous–discrete-time
systems affected by uncertainty. It is supposed that the coefficients
of the systems are polynomial functions of an uncertain vector
constrained into a semialgebraic set. It is shown that an LMI
condition for ensuring robust stability can be obtained by
introducing complex Lyapunov functions depending polynomially
on the uncertain vector and a frequency. Moreover, it is shown
that LMI conditions for establishing upper bounds of the robust
H∞ and H2 norms can be obtained by introducing analogous
Lyapunov functions depending rationally on the frequency. These
LMI conditions are sufficient for any chosen degree of the complex
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Lyapunov functions, and also necessary for a sufficiently large
degree of these functions under some mild assumptions on the
set of admissible uncertainties. The LMI conditions proposed
in this paper exploit Putinar’s Positivstellensatz (Putinar, 1993),
which allows one to investigate positivity of a polynomial over
a semialgebraic set by using polynomials that can be written as
sums of squares of polynomials (SOS). Some numerical examples
illustrate the proposed methodology.

This paper extends the preliminary conference papers (Chesi,
2014; Chesi & Middleton, 2014b) by showing that the LMI
condition for determining the robustH∞ norm is nonconservative
(Theorem3) and by adding the investigation of the robustH2 norm
(Section 5).

The paper is organized as follows. Section 2 provides the prob-
lem formulation and some preliminaries about SOS matrix poly-
nomials. Section 3 investigates the robust exponential stability.
Section 4 addresses the robust H∞ norm. Section 5 addresses the
robust H2 norm. Section 6 presents some illustrative examples.
Section 7 concludes the paper with some final remarks. Lastly, the
appendices report some additional results.

2. Preliminaries

2.1. Problem formulation

The notation is as follows. The real and complex number sets
are denoted by R and C. The imaginary unit is j. The symbol I
denotes the identity matrix (of size specified by the context). The
notations Re(·), Im(·) and | · | denote the real part, imaginary
part and magnitude. The Euclidean norm and the L2 norm are
denoted by ∥ · ∥2 and ∥·∥L2 . The adjoint, determinant, null space
and trace are denoted by adj(·), det(·), ker(·) and trace(·). The sign
is denoted by sgn(·). The notation A ⊗ B denotes the Kronecker
product of A and B. The complex conjugate, transpose and complex
conjugate transpose of A are denoted by Ā, AT and AH . We say
that a complex matrix A is Hermitian if AH

= A. The symbol ⋆
denotes corresponding blocks inHermitianmatrices. The notations
A > 0 and A ≥ 0 denote Hermitian positive definite and Hermitian
positive semidefinite matrix A. The degree is denoted by deg(·).

Let us consider the 2Dmixed continuous–discrete-time system
with uncertainty described by

d
dt

xc(t, k) = Acc(p)xc(t, k)+ Acd(p)xd(t, k)
+ Bc(p)u(t, k)

xd(t, k + 1) = Adc(p)xc(t, k)+ Add(p)xd(t, k)
+ Bd(p)u(t, k)

y(t, k) = Cc(p)xc(t, k)+ Cd(p)xd(t, k)
+D(p)u(t, k)

(1)

where xc ∈ Rnc and xd ∈ Rnd are the continuous and discrete
states, the scalars t, k ∈ R are independent variables, u ∈ Rnu

and y ∈ Rny are the input and output, p ∈ Rq is a time-invariant
uncertain vector, and the matrices Acc : Rq

→ Rnc×nc , Acd : Rq
→

Rnc×nd , Adc : Rq
→ Rnd×nc , Add : Rq

→ Rnd×nd , Bc : Rq
→

Rnc×nu , Bd : Rq
→ Rnd×nu , Cc : Rq

→ Rny×nc , Cd : Rq
→ Rny×nd

and D : Rq
→ Rny×nu are polynomial functions of degree not

greater than dsys.
It is supposed that p is constrained as

p ∈ P (2)

where P is the semialgebraic set

P =

p ∈ Rq

: ai(p) ≥ 0 ∀i = 1 . . . , na


(3)

and ai(p)i = 1, . . . , na, are polynomials. No assumption is intro-
duced on these polynomials at this stage except that P must be

nonempty (further assumptions will be introduced on these poly-
nomials with Definition 2 in Section 3, which will be exploited in
Theorems 2, 3 and 5). Let us observe thatP can represent a number
of sets typically used to model uncertain systems, for instance:
(1) hyper-ellipsoids of the form {p ∈ Rq

: pTAp ≤ 1}where A > 0
by choosing na = 1 and a1(p) = 1 − pTAp;

(2) hyper-rectangles of the form {p ∈ Rq
: pi ∈ [p−

i , p
+

i ], i =

1, . . . , q} where p−

i , p
+

i ∈ R, by choosing na = q and ai(p) =

(p−

i − pi)(pi − p+

i );
(3) polytopes of the form {p ∈ Rq

: vTi p ≤ wi, i = 1, . . . , l}where
vi ∈ Rq andwi ∈ R, by choosing na = l and ai(p) = wi − vTi p.

Extending the classical definition of exponential stability of 2D
mixed continuous–discrete-time systems (Pandolfi, 1984), we say
that the system (1)–(3) is robustly exponentially stable if, for a null
input u(t, k), there exist β > 0 and γ > 0 such thatxc(t, k)xd(t, k)


2

≤ βϱe−γ min{t,k} (4)

for all t ≥ 0 and k ≥ 0, for all initial conditions xc(0, k) and xd(t, 0),
and for all p ∈ P , where
ϱ = max{ϱc, ϱd}
ϱc = sup

k≥0
∥xc(0, k)∥2

ϱd = sup
t≥0

∥xd(t, 0)∥2 .
(5)

Problem 1. The first problem addressed in this paper consists of
establishing whether (1)–(3) is robustly exponentially stable. �

Next, let us introduce the robust H∞ norm of (1)–(3) as

γ ∗

∞
= sup

p∈P
γ∞(p) (6)

where γ∞(p) is the H∞ norm of (1) for the fixed value p of the
uncertainty given by

γ∞(p) = sup
u: ∥u∥L2 ≠0

∥y∥L2

∥u∥L2

(7)

and ∥ · ∥L2 is the L2 norm defined as

∥u∥L2 =

 ∞
k=0


∞

0
∥u(t, k)∥2

2dt. (8)

Problem 2. The second problem addressed in this paper consists
of determining the robust H∞ norm of (1)–(3), i.e., γ ∗

∞
. �

Lastly, let us introduce the robust H2 norm of (1)–(3) as

γ ∗

2 = sup
p∈P

γ2(p) (9)

where γ2(p) is the H2 norm of (1) for the fixed value p of the
uncertainty given by

γ2(p) =

 nu
l=1

∞
k=0


∞

0
gT (t, k, l)g(t, k, l)dt (10)

where g(t, k, l) is the impulse response due to a Dirac impulse
applied at k = 0 to the lth channel, i.e., the solution of y(t, k) for
null initial conditions and u(t, k) given by

u(t, k) =


δ(t)b(l) if k = 0
0 otherwise (11)

where δ(t) is the Dirac impulse and b(l) is the lth canonical basis
vector in Rnu .

Problem 3. The third problem addressed in this paper consists of
determining the robust H2 norm of (1)–(3), i.e., γ ∗

2 . �
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