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The piecewise stationary signal is a special kind of non-stationary signals, which exist widely in the 
real world. Many time-frequency techniques are developed to process non-stationary signals. However, 
almost all the classical time-frequency methods depends strongly on the choice of the ‘basis’, which 
makes them not match adaptively the real time-frequency structure of signals. This paper presents new 
insights on the Hilbert–Huang transform. It is shown that the Hilbert spectra can capture fine time-
frequency structures of piecewise stationary signals by generating the ‘bases’ adaptively. Based on that, 
the harmonic components of high energy can be utilized to generate feature vector for texture image 
classification. This feature vector is shown to be robust to rotation, uneven illumination and noise. 
Experimental results on three commonly used texture datasets give challenging recognition rates.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

According to the Fourier Analysis, a periodic signal can be writ-
ten as a sum of harmonic waves of constant frequency and ampli-
tude if only it satisfies to the Dirichlet condition:

x(t) =
∑

k

Ak cos(2πωkt + ϕk). (1)

Most signals in the real world can be approximately modeled 
by this model. The basic idea of the classical spectrum analysis 
methods for signal processing is to extract the useful harmonic 
components with well-designed filters [1–3]. The Fourier spectrum 
analysis has become the classic tool for stationary signal process-
ing. However, if the signal is not stationary then these harmonic 
waves may not coincide with its physical oscillations, which are 
called pseudo ones. There are many non-stationary signals in the 
real world, such as the physiological rhythm [4], textural images 
[5], and speeches [6]. To analyze and process non-stationary sig-
nals, some theory and techniques, including the short-time Fourier 
transform, Wavelet Transform, and Hilbert–Huang transform, have 
been developed in the past half century.
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The Hilbert–Huang Transform (HHT) provides a powerful tool 
for nonlinear and non-stationary signal processing [7]. It decom-
poses a signal adaptively into finite (often small) number of the 
so-called intrinsic mode functions (IMFs) by an algorithm, called 
empirical mode decomposition (EMD). It is shown that the EMD 
essentially acts as an adaptive filter bank [8]. The adaptivity of 
the decomposition to nonlinear and non-stationary signals have 
attracted a lot of interests and many developments have been pro-
posed in the last twenty years, such as [9–15]. After EMD, the IMFs 
can be viewed as adaptive versions of the harmonic waves. Dif-
ferent from the Fourier and wavelet decompositions, the IMFs are 
generated adaptively during the decomposition, rather than being 
specified in advance.

The IMF is an empirical mode for monocomponent signals. 
A detailed discussion on the coincidence between the monocom-
ponent signals and IMFs is given in [16–18]. Once the IMFs are 
extracted, the instantaneous frequency and amplitude of each IMF 
can be found by using the Hilbert transform [19,20] or other de-
modulation algorithms [21–23], which form an energy distribution 
with explicit physically significant [7]. The energy distributions of 
all the IMFs are combined to generate the so-called Hilbert spec-
trum. It has been shown that the Hilbert spectrum characterizes 
the signal locally on both the time and frequency domains. As a 
powerful tool for adaptive time-frequency analysis, the Hilbert–
Huang transform has been extensively applied in many applica-
tions [24–28].
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The piecewise stationary signal is a special kind of non-
stationary signals. It may be not stationary on the whole time 
axis but stationary piecewise, that is, it can be formulated by Eq. 
(1) segment by segment on the time (space) domain. This locality 
makes the HHT the ideal candidate for processing of such signals. 
Based on the Hilbert spectrum, this paper shows that the harmonic 
components of the highest energies in the Hilbert marginal spec-
trum are stable and dominant features of the piecewise stationary 
signals.

Texture classification is very important to many applications in 
pattern recognition, such as the understanding of remote sensing 
images [29], medical images [30], content-based image retrieval to 
text page segmentation [31]. Some texture classification methods 
have been proposed in the past few decades [32–41]. Texture im-
age are non-stationary signals. For such signals, people generally 
establish suitable time-frequency (TF) and time-scale (TS) repre-
sentations to extract classification feature [42]. In this study, we 
treat texture image as piecewise stationary signals and use the 
harmonic components with the highest energies to generate a fea-
ture vector for texture classification. It is shown that the proposed 
features are robust to rotation, uneven illumination and noise. Ex-
periments on three commonly used texture data sets from the 
Brodatz database are implemented and compared with the existing 
methods. The proposed features are supported by the encouraging 
experimental results.

The rest of this manuscript is organized as follows. Section 2
presents a brief introduction to the Hilbert spectrum and its 
marginal spectrum. Some useful traits of HHT are highlighted and 
the model of piecewise stationary signals is also given. In Section 
3, a new type of features is established for texture classification 
based on the Hilbert marginal spectrum. The robustness to rota-
tion, illumination and noise are analyzed theoretically. Finally, the 
experiments and comparison with existing methods are given in 
Section 4. Section 5 is a short conclusion and discussion.

2. Hilbert marginal spectrum for piecewise local stationary 
signals

The Hilbert–Huang Transform is proposed by Huang et al. in 
[7]. When processed with the HHT, an arbitrary discrete signal x(t)
is adaptively decomposed by the Empirical Mode Decomposition 
(EMD) algorithm into a finite and often small number of Intrin-
sic Mode Functions (IMFs), denoted by xi(t), i = 1, · · · , n, and a 
residue r(t):

x(t) =
n∑

i=1

xi(t) + r(t). (2)

Since each IMF xi(t) is an approximation of monocomponent sig-
nal, its instantaneous phase θi(t) and amplitude ai(t) can be cal-
culated as

ai(t) =
√

x2
i (t) + (Hxi)

2(t), θi(t) = arctan
Hxi(t)

xi(t)
, (3)

where Hxi(t) is the Hilbert transform of xi(t) defined by

Hxi(t) = 1

π
P

∞∫

−∞

xi(τ )

t − τ
dτ (4)

with P indicating the Cauchy principal value integral. Accordingly, 
the instantaneous frequency of xi(t) is defined as

ωi(t) = dθi(t)

dt
. (5)

With the instantaneous frequency and amplitudes, the Hilbert 
spectrum of x(t) is defined as

H(ω, t) =
n∑

i=1

ai(t)δ(ω,ωi(t)), (6)

where δ(x, y) is the Kronecker delta function which is 1 if the vari-
ables are equal and 0 otherwise. We integrate H(ω, t) over the 
time axis to calculate the following Hilbert marginal spectrum:

h(ω) =
T∫

0

H(ω, t)dt. (7)

Three key traits of the Hilbert marginal spectrum need to be 
highlighted.

• Different from the Fourier decomposition and wavelet decom-
position, EMD has no specified ‘basis’. Its ‘bases’ are adaptively 
produced during the decomposition process, which avoids 
the possible pseudo components as in the Fourier expansion. 
Hence, IMFs are more intrinsic and natural than the harmonic 
waves used in the Fourier transform and the mother wavelet 
in the wavelet transform.

• The Hilbert transform Hxi(t) is defined as the convolution of 
xi(t) and 1/t by Eq. (4), it emphasizes the local properties of 
xi(t) even though the transform is global. This makes the en-
ergy distribution of each IMF possess very fine local properties 
in the time (space) domain. Meanwhile, EMD is similar to sift-
ing; it separates the local modes of the data from the finest-
scale component to the mean trend. The first IMF includes the 
finest scale component, namely, the highest-frequency com-
ponent, and the residue is the mean trend, which is the 
lowest-frequency component or the substitute of the DC term 
in the Fourier expansion. The oscillations of the same scale 
would never occur in two different IMFs at the same loca-
tion. If ωi(t) is the frequency of the ith IMF at time t then 
ω1(t) > ω2(t) > · · · . Thus, with the Hilbert spectrum, frequen-
cies of a signal are distinguishable at any time.

• The frequency in the marginal spectrum has an entirely dif-
ferent meaning from that in Fourier spectral analysis. In the 
Fourier representation, the existence of energy at a frequency 
means a component of a sine or cosine wave has persisted 
through the time (space) span of the data. However, in the 
Hilbert marginal spectrum, the existence of energy at the fre-
quency denotes a high likelihood for such a wave to have ap-
peared locally. This means, the frequency components of local 
oscillations can be captured by the Hilbert marginal spectrum 
successfully.

A signal x(t) defined on the interval [0, T ] is called piecewise 
stationary if it is stationary segment by segment, that is, the whole 
time interval [0, T ] can be divided into n segments:

0 = t0 < t1 < · · · < tn = T ,

such that x(t) is stationary on each [ti−1, ti] for i = 1, · · · , n. That 
is, x(t) can be written as

x(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
k∈N0

A0
k cos(2πω0

k t + ϕ0
k ) t ∈ [t0, t1)

· · · · · ·∑
k∈Ni

Ai
kcos(2πωi

kt + ϕ i
k) t ∈ [ti, ti+1)

· · · · · ·∑
k∈Nn−1

An−1
k cos(2πωn−1

k t + ϕn−1
k ) t ∈ [tn−1, tn]

(8)

The traits of the signal suggest that the HHT may be an ideal 
tool to analyze piecewise local stationary signals. First, adaptivity 
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