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Singular spectral analysis (SSA) is a nonparametric spectral estimation method for performing the time 
series analysis. It represents a signal as the sum of its components. In this manuscript, a nearly 
cyclostationary signal is considered. The signal is quantized and the SSA is employed to reconstruct the 
original signal based on the quantized signal. First, the reconstructed signal is modeled as the weighted 
sum of the SSA components. In order to estimate the weights, each quantization level is considered as a 
class. Different signal values are associated with different probabilities of the corresponding classes via 
the sigmoid functions defined based on the distances between the signal values and the corresponding 
quantized levels. Therefore, our proposed method provides the optimal estimate of a given signal in the 
minimum cross entropy sense. Computer numerical simulation results show that our proposed method 
can reduce the quantization error and reconstruct the original signal more accurately compared to some 
existing algorithms.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Quantization is widely employed in many signal processing sys-
tems such as in the data compression [1] and the analog to digital 
conversion [2,27] systems. However, it is an inherently nonlinear 
process. More precisely, it is a many to few mapping because it 
involves an irreversible quantization error. That means, the same 
output value is obtained even though the input values are differ-
ent [3]. Therefore, in general it is impossible to exactly recover the 
original signal value if only the quantized value is given.

To reduce the quantization error, some preprocessing methods 
where the encoder structures are changed were proposed for re-
ducing the quantization error. The most common preprocessing 
method is the dithering approach [4,5]. A uniformly distributed 
noise is added and subtracted before and after the quantizer, re-
spectively, in order to widen the spectra of the input and the out-
put of the quantizer so as to achieve the statistical independence 
between the input signal and the quantization error. However, im-
plementing the uniformly distributed noise generator is challeng-
ing from a practical situation viewpoint. On the other hand, the 
sigma delta modulation is also widely used in reducing the quan-
tization error [6–8]. A loop filter is added before the quantizer 
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while the output of the quantizer is negatively fedback to the input 
of the loop filter. If the input signal is oversampled, then the fre-
quency band of the input signal will be localized in a very narrow 
band. By properly designing the loop filter, the quantization error 
will be shaped away from the signal band. Therefore, this method 
can achieve a very high signal to noise ratio (SNR). However, some 
high order sigma delta modulators suffer from the instability is-
sue [7].

On the other hand, some promising postprocessing methods 
were proposed to improve the signal quality without the need 
of changing the encoder structure [9–14]. The most common and 
classical method is to process the quantized signal by a lowpass 
filter [9]. The lowpass filtering can smooth the blocking artifacts 
and extract some useful information from the quantized signal. 
There are many existing works on designing the filters including 
the filter design using the discrete cosine transform [28], the fil-
ter design based on the optimization approaches [29–33] and so 
on. However, the filtering method is not effective for the quan-
tizer with a very small number of bits. Besides, the wavelet based 
thresholding method is employed to reduce the quantization error. 
It can significantly improve the signal quality for some signals [10,
13,14]. However, this method does not perform well for all practi-
cal signals. Also, there is no general rule for predefining the basis 
function and the threshold value. On the other hand, an adaptive 
Wiener filtering approach was proposed to reduce the quantization 
error [12]. The mean squares error between the ideal spectrum of 
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the unquantized signal and the estimated spectrum of the quan-
tized signal is minimized. However, this approach requires a full 
statistic knowledge on the unquantized signal.

In this manuscript, a nonparametric spectral estimation method 
based on the singular spectral analysis (SSA) [15] is proposed. This 
is a postprocessing method to reconstruct the original signal from 
the quantized signal. Here, the input signal is assumed to be nearly 
cyclostationary. Also, a referenced signal is assumed to be priori 
known for performing the training. The quantized signal is first 
decomposed into several SSA components. Then, the reconstructed 
signal is represented as a weighted sum of the SSA components. 
Here, it is required to determine the weights. To address this issue, 
every quantization level is considered as a class. The signal values 
are associated with the probabilities of the classes via the sigmoid 
functions defined based on the distances between the signal val-
ues and the quantization levels. In other words, if the signal value 
is close to a quantization level, then the probability of having the 
signal value belonging to this class is relatively high. On the other 
hand, if the signal value is far away from the quantization level, 
then the probability is low. The probability function is modeled by 
the sigmoid function which is widely used in the machine learning 
community [16]. Therefore, the weights can be optimally estimated 
based on minimizing the cross entropy between a referenced sig-
nal and its approximation.

A greedy algorithm called the matched sign pursuit (MSP) is 
employed to reconstruct the signal from the quantized measure-
ments in the compressive sensing (CS) applications [25,26]. How-
ever, it is different from our proposed method. First, the signal 
is sparse and compressible in the CS applications [25,26]. That 
is, the signal can be represented in the domain where most of 
the coefficients in this domain are zero or with small values. 
Only a few coefficients are with large values. Therefore, the quan-
tized measurements in the CS applications are obtained through 
a transformed domain. However, the nearly cyclostationary signal 
is considered in this manuscript. The nearly cyclostationary sig-
nal is quantized directly by a uniform quantizer. As a result, the 
quantized measurements are obtained in time domain. Second, the 
objective function of the reconstruction problem in the CS applica-
tions is to minimize the l1 norm based on the sparsity prior [25,
26]. However, the objective function of the reconstruction problem 
in this manuscript is to minimize the cross entropy based on a 
referenced signal. Further, the reconstruction problem in [25,26] is 
nonconvex since its constraints are nonconvex. However, the opti-
mization problem in this manuscript is proved to be convex. Third, 
the MSP algorithm is employed to solve the reconstruction prob-
lem in the CS applications [25,26]. However, the solution is not 
guaranteed to be global by using this greedy algorithm. The inte-
rior point method is applied to solve the optimization problem in 
this manuscript. The solution is guaranteed to be global since the 
optimization problem is convex.

The main contributions of this manuscript include two aspects. 
First, the SSA method is proposed to use for reducing the quan-
tization error. It is different from the conventional filtering meth-
ods since the dictionaries used for reducing the quantization error 
are formed in different ways. In particular, the filtering method is 
based on a dictionary which is formed by a set of orthonormal 
basis functions. More precisely, the sine functions and the cosine 
functions are used in the Fourier transform. The basis functions are 
predefined and they do not change as the input quantized signal 
changes. On the other hand, the SSA method can decompose a sig-
nal into several components automatically. Therefore, the SSA com-
ponents change adaptively as the input quantized signal changes. 
As a result, the dictionary which is formed by the SSA components 
changes automatically according to the input quantized signal. The 
SSA method has the advantage of adaptiveness over the filtering 
methods. The experimental results are presented. They show that 

the SSA method is potentially useful for reconstructing the original 
signal from the quantized signal. Second, this manuscript proposes 
to consider every quantization level as a class. The signal values 
are associated with the probabilities of the classes via the sigmoid 
functions. Further, the weights are optimally estimated in the min-
imum cross entropy sense. The minimum cross entropy criterion 
has the advantage over the conventional minimum mean squares 
error criterion. This is because the last several eigenvalues may 
be nearly equal to zero for some signals in the SSA procedures 
particularly when the windows length is large. The corresponding 
vectors of the SSA components will be close to the zero vectors. 
Therefore, the conventional mean squares error criterion suffers 
from the ill posed issue which results to several abnormal weights. 
However, since the singular values are restricted to the range be-
tween 0 and 1 due to the probability constraint, the minimum 
cross entropy criterion will work properly.

The outline of this manuscript is as follows. Section 2 briefly 
reviews the procedures for performing the SSA. Section 3 presents 
our proposed method for reconstructing the signal from the quan-
tized signal. Some computer numerical simulation results are pre-
sented in Section 4. Finally, a conclusion is drawn in Section 5.

2. Brief review on the SSA

The SSA is a nonparametric time series analysis method. It is 
widely used in different areas such as in the spectral estimation, 
the biomedical signal denoising [17], the climatic time series fore-
casting [18] and the hyperspectral data analysis [19].

Let the length of a one dimensional discrete time signal be N
and the vector of the signal be x = [x1 · · · xN ]T . Here, the su-
perscript T denotes the transposition operator. The procedures for 
performing the SSA usually consist of the following steps:

Step 1. Forming the Hankel matrix
The signal is segmented into the overlapped pieces. Define the 

lengths of these overlapped pieces or the window length as L
where 1 < L ≤ N

2 . Define K as the total number of these over-
lapped pieces. That is, K = N − L + 1. Let these overlapped pieces 
of the signal be xk = [xk · · · xk+L−1]T for k = 1, . . . , K . Define the 
trajectory matrix as X = [x1 · · ·xK ]. That is,

X =

⎡
⎢⎢⎢⎣

x1 x2 · · · xN−L+1
x2 x3 · · · xN−L+2
...

...
. . .

...

xL xL+1 · · · xN

⎤
⎥⎥⎥⎦ . (1)

Note that X is a Hankel matrix.

Step 2. Performing the singular value decomposition (SVD)
The SVD is applied to the matrix XXT . Denote λ j for j =

1, . . . , L as the singular values of the obtained diagonal matrix. 
Denote Λ = diag(λ1, . . . , λL). Here, diag(λ1, . . . , λL) denotes the di-
agonal matrix with its diagonal elements being equal to λ j . Let 
the column vectors of the obtained singular matrices be v j for 
j = 1, . . . , L. Denote V = [v1 · · ·vL]. If the SVD is applied to X, then 
λ j and v j for j = 1, . . . , L are the squares of the singular values of 
the obtained diagonal matrix and the corresponding column vec-
tors of the obtained singular matrices, respectively. That is,

XXT = VΛVT . (2)

Assume that λ j for j = 1, . . . , L are sorted in the descending order. 
That is, λ1 ≥ · · · ≥ λL ≥ 0. Define X̃ j = v jvT

j X for j = 1, . . . , L. Then, 
it can be shown that

X =
L∑

j=1

X̃ j . (3)



Download English Version:

https://daneshyari.com/en/article/6951590

Download Persian Version:

https://daneshyari.com/article/6951590

Daneshyari.com

https://daneshyari.com/en/article/6951590
https://daneshyari.com/article/6951590
https://daneshyari.com

