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Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have 
become very popular in signal processing over the last years. Importance Sampling (IS) is a well-
known Monte Carlo technique that approximates integrals involving a posterior distribution by means of 
weighted samples. In this work, we study the assignation of a single weighted sample which compresses 
the information contained in a population of weighted samples. Part of the theory that we present as 
Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. 
The provided analysis yields several theoretical and practical consequences. For instance, we discuss the 
application of GIS into the Sequential Importance Resampling framework and show that Independent 
Multiple Try Metropolis schemes can be interpreted as a standard Metropolis–Hastings algorithm, 
following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques 
based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of 
sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The 
second one is the Distributed Particle Metropolis–Hastings technique, where different parallel particle 
filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and 
then tested with a proper acceptance probability. The novel schemes are tested in different numerical 
experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a 
wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given 
satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three 
illustrative Matlab demos are also provided.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian signal processing, which has become very popular 
over the last years in statistical signal processing, requires the 
study of complicated distributions of variables of interested con-
ditioned on observed data [1,2]. Unfortunately, the computation 
of statistical features related to these posterior distributions (such 
as moments or credible intervals) is analytically impossible in 
many real-world applications. Monte Carlo methods are state-of-
the-art tools for approximating complicated integrals involving 
sophisticated multidimensional densities [3,1,2]. The most pop-
ular classes of MC methods are the Importance Sampling (IS) 
techniques and the Markov chain Monte Carlo (MCMC) algo-
rithms [3,2]. IS schemes produce a random discrete approximation 
of the posterior distribution by a population of weighted samples 

* Corresponding author at: Image Processing Laboratory, Universitat de València, 
València, Spain.

E-mail address: lmartino@ing.uc3m.es (L. Martino).

[4,5,1,2]. MCMC techniques generate a Markov chain (i.e., a se-
quence of correlated samples) with a pre-established target proba-
bility density function (pdf) as invariant density [3,1]. Both families 
are widely used in the signal processing community. Several ex-
haustive overviews regarding the application of Monte Carlo meth-
ods in statistical signal processing, communications and machine 
learning can be found in the literature: some of them specifically 
focused on MCMC algorithms [6–9], others specifically focused on 
IS techniques (and related methods) [10,4,11,12] or with a broader 
view [13–17].

In this work, we introduce theory and practice of a novel ap-
proach, called Group Importance Sampling (GIS), where the infor-
mation contained in different sets of weighted samples is com-
pressed by using only one, yet properly selected, particle, and one 
suitable weight.1 This general idea supports the validity of differ-

1 A preliminary version of this work has been published in [18]. With respect to 
that paper, here we provide a complete theoretical support of the Group Importance 
Sampling (GIS) approach (and of the derived methods), given in the main body of 
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Table 1
Main notation of the work.

x = [x1, . . . , xD ] Variable of interest, x ∈ X ⊆R
D×ξ , with xd ∈R

ξ for all d

π̄ (x) Normalized posterior pdf, π̄ (x) = p(x|y)

π(x) Unnormalized posterior function, π(x) ∝ π̄ (x)

π̂(x|x1:N ) Particle approximation of π̄ (x) using the set of samples x1:N = {xn}N
n=1

x̃ Resampled particle, x̃ ∼ π̂ (x|x1:N ) (note that x̃ ∈ {x1, . . . ,xN })

wn = w(xn) Unnormalized standard IS weight of the particle xn

w̄n = w̄(xn) Normalized weight associated to xn

w̃m = w̃ (̃xm) Unnormalized proper weight associated to the resampled particle x̃m

Wm Summary weight of m-th set Sm

I N Standard self-normalized IS estimator using N samples
Ĩ N Self-normalized estimator using N samples and based on GIS theory

Z Marginal likelihood; normalizing constant of π(x)

Ẑ , Z Estimators of the marginal likelihood Z

ent Monte Carlo algorithms in the literature: interacting parallel 
particle filters [19–21], particle island schemes and related tech-
niques [22–24], particle filters for model selection [25–27], nested 
Sequential Monte Carlo (SMC) methods [28–30] are some exam-
ples. We point out some consequences of the application of GIS in 
Sequential Importance Resampling (SIR) schemes, allowing partial 
resampling procedures and the use of different marginal likeli-
hood estimators. Then, we show that the Independent Multiple 
Try Metropolis (I-MTM) techniques and the Particle Metropolis–
Hastings (PMH) algorithm can be interpreted as a classical Inde-
pendent Metropolis–Hastings method by the application of GIS.

Furthermore, we present two novel techniques based on GIS. 
The first one is the Group Metropolis Sampling (GMS) algorithm that 
generates a Markov chain of sets of weighted samples. All these 
resulting sets of samples are jointly exploited to obtain a unique 
particle approximation of the target distribution. On the one hand, 
GMS can be considered an MCMC method since it produces a 
Markov chain of sets of samples. On the other hand, the GMS can 
be also considered as an iterated importance sampler where differ-
ent estimators are finally combined in order to build a unique IS 
estimator. This combination is obtained dynamically through ran-
dom repetitions given by MCMC-type acceptance tests. GMS is 
closely related to Multiple Try Metropolis (MTM) techniques and 
Particle Metropolis–Hastings (PMH) algorithms [31–36], as we dis-
cuss below. The GMS algorithm can be also seen as an extension 
of the method in [37], for recycling auxiliary samples in a MCMC 
method.

The second novel algorithm based on GIS is the Distributed 
PMH (DPMH) technique where the outputs of several parallel par-
ticle filters are compared by an MH-type acceptance function. The 
proper design of DPMH is a direct application of GIS. The benefit 
of DPMH is twofold: different type of particle filters (for instance, 
with different proposal densities) can be jointly employed, and 
the computational effort can be distributed in several machines 
speeding up the resulting algorithm. As the standard PMH method, 
DPMH is useful for filtering and smoothing the estimation of the 
trajectory of a variable of interest in a state–space model. Further-
more, the marginal version of DPMH can be used for the joint 
estimation of dynamic and static parameters. When the approxi-
mation of only one specific moment of the posterior is required, 
like GMS, the DPMH output can be expressed as a chain of IS 
estimators. The novel schemes are tested in different numerical 
experiments: hyperparameter tuning for Gaussian Processes, two 
localization problems in a wireless sensor network (one with real 

the text (Sections 3 and 4) and in five additional appendices. Moreover, we pro-
vide an additional method based on GIS in Section 5.2 and a discussion regarding 
particle Metropolis schemes and the standard Metropolis–Hastings method in Sec-
tion 4.2. We also provide several additional numerical studies, one considering real 
data. Related Matlab software is also given at https://github .com /lukafree /GIS .git.

data), and finally a filtering problem of Leaf Area Index (LAI), which 
is a parameter widely used to monitor vegetation from satellite 
observations. The comparisons with other benchmark Monte Carlo 
methods show the benefits of the proposed algorithms.2

The remainder of the paper has the following structure. Sec-
tion 2 recalls some background material. The basis of the GIS the-
ory is introduced in Section 3. The applications of GIS in particle 
filtering and Multiple Try Metropolis algorithms are discussed in 
Section 4. In Section 5, we introduce the novel techniques based 
on GIS. Section 6.1 provides the numerical results and in Section 7
we discuss some conclusions.

2. Problem statement and background

In many applications, the goal is to infer a variable of inter-
est, x = x1:D = [x1, x2, . . . , xD ] ∈ X ⊆ R

D×ξ , where xd ∈ R
ξ for all 

d = 1, . . . , D , given a set of related observations or measurements, 
y ∈ R

dY . In the Bayesian framework all the statistical information 
is summarized by the posterior probability density function (pdf), 
i.e.,

π̄ (x) = p(x|y) = �(y|x)g(x)

Z(y)
, (1)

where �(y|x) is the likelihood function, g(x) is the prior pdf and 
Z(y) is the marginal likelihood (a.k.a., Bayesian evidence). In gen-
eral, Z ≡ Z(y) is unknown and difficult to estimate in general, so 
we assume to be able to evaluate the unnormalized target func-
tion,

π(x) = �(y|x)g(x). (2)

The computation of integrals involving π̄ (x) = 1
Z π(x) is often in-

tractable. We consider the Monte Carlo approximation of compli-
cated integrals involving the target π̄ (x) and an integrable function 
h(x) with respect to π̄ , i.e.,

I = Eπ̄ [h(X)] =
∫
X

h(x)π̄ (x)dx, (3)

where we denote X ∼ π̄ (x). The basic Monte Carlo (MC) procedure 
consists in drawing N independent samples from the target pdf, 
i.e., x1, . . . , xN ∼ π̄ (x), so that Î N = 1

N

∑N
n=1 h(xn) is an unbiased 

estimator of I [1,2]. However, in general, direct methods for draw-
ing samples from π̄ (x) do not exist so that alternative procedures 
are required. Below, we describe the most popular approaches. Ta-
ble 1 summarizes the main notation of the work. Note that the 

2 Three illustrative Matlab demos are also provided at https://github .com /
lukafree /GIS .git.

https://github.com/lukafree/GIS.git
https://github.com/lukafree/GIS.git
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