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a b s t r a c t

In this paper the design of sampled-data state observers for nonlinear plants is investigated under the
effect of system and measurement disturbance signals. We establish general design principles using
the standard approaches of (i) direct discrete-time design via approximation and (ii) discretization of
a continuous-time observer (emulation). By interpreting the disturbances as exogenous inputs affecting
the error dynamics, sufficient conditions are derived which ensure the input-to-state stability (ISS) of
the observer error system in a semiglobal practical sense for the unknown exact discrete-time model.
Next, we focus on systems whose vector fields are one-sided Lipschitz to develop constructive design
techniques via linear matrix inequalities (LMIs). Numerical simulations of an academic example and a
chaotic attractor corroborate the effectiveness of the proposed sampled-data estimators.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Observers are well accepted as one of the fundamental building
blocks in system theory with extensive research results in the
literature (see, e.g., Radke & Gao, 2006 and the references
therein). Throughout this paper we study sampled-data nonlinear
observers, understood as observers for continuous-time systems
implemented using a digital computer via sample andhold devices.
Themain difficulty encountered in the sampled-data design is that
most nonlinear differential equations of interest do not have a
closed-form solution and therefore the designer is forced to rely on
approximatemodels. Research onnonlinear sampled-data systems
that takes explicit account of the lack of exact discrete-timemodels
was pioneered by Nesić and Teel and has lead to a comprehensive
body of literature (Laila, Nešić, & Astolfi, 2006; Nešić & Teel, 2004;
Nešić, Teel, & Kokotović, 1999). See also Beikzadeh and Marquez
(2013, 2014, 2015), Liu, Marquez, and Lin (2008), Polushin and
Marquez (2004) for extensions to multirate systems.
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Despite advances in nonlinear sampled-data control, sampled-
data observers have received much less attention and there
remain several challenging open issues. Significant results in this
context include the Newton observers proposed by Moraal and
Grizzle (1995) for nonlinear systemswith sampledmeasurements,
Biyik and Arcak (2006) that resolves the problem of unknown
exact discrete-time models in Dabroom and Khalil (2001), Moraal
and Grizzle (1995) that studies discretized high-gain observers,
Arcak and Nešić (2004) that proposes a general framework for
sampled-data observer design and Postoyan and Nešić (2012) that
develops hybrid emulation-based techniques over communication
networks. One important element in sampled-data observers
design that requires further research is the effect of disturbances
on the estimation error. Incorporating disturbance action in
observers is nontrivial given that in the presence of external
disturbances the reconstructed observer cannot converge to
that of the true plant and therefore the classical Lyapunov
tools cannot be employed. One way to tackle this problem is
to consider the mapping from disturbance to observer error
and employ the notion of input-to-state stability (ISS) (Sontag,
1989) to characterize the error dynamics. This concept was
already applied to observer design of continuous-time plants
with slope-restricted nonlinearities (Arcak & Kokotović, 2001) and
Lipschitz systems (Alessandri, 2004). In this article we present
two prescriptive sampled-data estimation procedures for general
nonlinear systems based on (i) discrete-time design (DTD), and
(ii) continuous-time design (CTD) or emulation (see also Laila et al.,
2006, Nešić et al., 1999). We show that, given a continuous-time
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nonlinear plantmodel, thenunder some standard assumptions and
Lyapunov-ISS conditions, the proposed observers converge to the
true plant state in an input-to-state stable, semiglobal practical
sense.

The second half of the paper is dedicated to systems satisfying
a one-sided Lipschitz condition, in order to obtain constructive
algorithms for a special class of systems. One-sided Lipschitz
systems can be viewed as a generalization of the popular Lipschitz
condition that relaxes the assumption of linear dominance and
reduces the conservatism in the classical Lipschitz based results.
Hu (2006, 2008) present a complete analysis of the observer
convergence problem for one-sided Lipschitz systems. Existence
conditions are discussed in Zhao, Tao, and Shi (2010) and feedback
stabilization is formulated in Fu, Hou, and Duan (2013). These
works focus on stability and make use of a modified one-sided
Lipschitz condition in which the nonlinearity is scaled via a fixed
symmetric matrix that makes the design problem tractable, but
affects the value of the one-sided Lipschitz constant and brings
additional constraints on the Lyapunov function. Observer design
for the original one-sided Lipschitz condition remains relatively
unexplored. The authors in Abbaszadeh and Marquez (2010)
introduced an alternative approach which eliminates the need
for scaling at the expense of an additional condition on the
nonlinearity, known as quadratically inner bounded. This approach
was further developed in Zhang, Su, Liang, and Han (2012) and
in Benallouch, Boutayeb, and Zasadzinski (2012) for the discrete-
time case. Using our proposed setups in the first half of the paper,
we consider sampled-data observer design for one-sided Lipschitz
systems in the presence of disturbance inputs. We present DTD
and CTD-based schemes formulated in terms of LMIs that ensure
input-to-error stability. We show that while the DTD observer
necessitates the quadratically inner-bounded condition, the CTD
observer does not. Instead, it employs a quasi-one-sided Lipschitz
condition (Fu et al., 2013; Hu, 2008) on the plant nonlinearity to
facilitate the design procedure.

2. Definitions and problem setting

Notation. For a given function d : R+
→ Rq, d(k) indicates the

value of d(·) sampled at t = kT , k ∈ Z+ and d̄ = d[k] :=

{d(t) : t ∈ [kT , (k + 1)T ]} for k ∈ Z+ with the norm ∥d∥∞ =

∥d[k]∥∞ = ess supτ∈[kT ,(k+1)T ] |d(τ )|. ⟨·, ·⟩ is the natural inner
product, i.e., given x, y ∈ Rn, then ⟨x, y⟩ = xᵀy, where xᵀ is the
transpose of x.

We consider the following nonlinear system:

G :


ẋ(t) = f (x(t), u(t), d(t))
y(t) = g(x(t), u(t), d(t)) (1)

where x ∈ Rn, u ∈ Rm, d ∈ Rq and y ∈ Rp are respectively the
state vector, control input, exogenous disturbance and measured
output. The nonlinear function f is sufficiently regular such that
there exists at least one solution for each fixed constant input and
admissible disturbance. Assume that u is sampled and held via a
(zero-order) hold device H at the same sampling period T > 0 as
y via an ideal sampler S in a sampled-data configuration. The exact
discrete-time model of (1) is then given by

x(k + 1) = F e
T (x(k), u(k), d[k])

y(k) = g(x(k), u(k), d(k))
(2)

where F e
T (x, u, d̄) is the solution of the differential equation in (1)

over sampling interval [kT , (k + 1)T ) with a constant input u
starting at initial condition x. The need for a closed form solution
of the differential equation (1) makes it impossible to obtain the
model (2) in most practical cases. Therefore, consistent with the

literature on nonlinear sampled-data systems, we refer to F e
T as

the exact discrete-time model of the system (1) and assume that it
is unknown. Instead we employ a family of approximate discrete-
timemodels F a

T ,h(x(k), u(k), d[k]), where h is amodelling parameter
utilized to refine the approximate model for a given T . Clearly, our
results also apply when the exact discretized model is available.

Definition 1. The approximate model F a
T ,h is said to be one step

consistent with F e
T if there exist a class-K function ρ(·) and T1 > 0

such that given any strictly positive numbers (δ1, δ2, δ3) and each
fixed T ∈ (0, T1], there exists h1 ∈ (0, T ] such that |F e

T (x, u, d̄) −

F a
T ,h(x, u, d̄)| ≤ Tρ(h) for all |x| ≤ δ1, |u| ≤ δ2, ∥d∥∞ ≤ δ3 and
h ∈ (0, h1].

We design a family of sampled-data observers of the form

x̂(k + 1) = F a
T ,h(x̂(k), u(k), 0) + ℓT ,h(x̂(k), y(k), u(k)), (3)

where x̂(k) denotes the state estimate, F a
T ,h(x̂(k), u(k), 0) is the

approximatemodelwith zero disturbance and ℓT ,h is the correction
function zero at zero.

Ourmain question is under what conditions, and in what sense,
an estimator like (3) guarantees approximate convergence to the
true plant state when applied to the exact model (2). Note that
it is well established that, even in the absence of disturbance,
asymptotic convergence of an observer design based on the
approximate model does not necessarily guarantee convergence
of the true (exact) model (see Arcak & Nešić, 2004). We use the
following definition to characterize the convergence behaviour.

Definition 2. The observer (3) is said to be input-to-error stable
semiglobal in T and practical in h, if there exist β ∈ KL and γ ∈ K
such that for any δ1, δ2 > 0 and compact sets X ⊂ Rn, U ⊂ Rm,
we can find T1 > 0 such that for any T ∈ (0, T1] and ν ∈ (0, δ1),
there exists h1 ∈ (0, T ] such that ∀h ∈ (0, h1], |x(0) − x̂(0)| ≤ δ1,
∥d∥∞ ≤ δ2 with x as the solution of the exact discrete-time model
and x(k) ∈ X, u(k) ∈ U, ∀k ∈ Z+ implies

|x(k) − x̂(k)| ≤ β(|x(0) − x̂(0)|, kT ) + γ (∥d∥∞) + ν. (4)

This definition is an extension of the notion of semiglobal
practical convergence introduced by Arcak and Nešić (2004) when
the plant is exposed to disturbance inputs. Note that for d = 0,
Definition 2 reduces to Arcak and Nešić (2004, Definition 2(b)). The
effect of the sampling period as well as the refining parameter on
the residual observer error is investigated in Section 6.

3. Observer design via approximation and input-to-state stabil-
ity

In this section, we derive conditions based on the approximate
model and DTD method that guarantee input-to-error stability of
the sampled-data observer for the exact model in the sense of
Definition 2. From (2) and (3), the observer error e := x− x̂ satisfies

e(k + 1) = ET ,h(e(k), x(k), u(k), d[k])
+ F e

T (x(k), u(k), d[k]) − F a
T ,h(x(k), u(k), d[k]) (5)

where

ET ,h(e, x, u, d̄) := F a
T ,h(x, u, d̄) − F a

T ,h(x̂, u, 0) − ℓT ,h(x̂, y, u) (6)

indicates the nominal estimation error dynamics for the approxi-
mate design, and F a

T ,h − F e
T is the mismatch between the approxi-

mate and exact plant models.
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