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a b s t r a c t

In this paper, the finite-time velocity-free attitude coordination control for spacecraft formation flying
under an undirected communication graph is addressed. A finite-time observer is introduced to obtain
an accurate estimation of unmeasurable angular velocity and a decentralized finite-time observer is
employed to estimate the angular acceleration of the virtual leader.With the application of the finite-time
observer, the decentralized finite-time observer, and the homogeneousmethod, a continuous distributed
finite-time attitude coordination control law is designed for a group of spacecraft without requiring
angular velocitymeasurements. A rigorous proof shows that semi-global finite-time stability of the overall
closed-loop system can be achieved and the proposed velocity-free control law guarantees a group of
spacecraft to simultaneously track a common time-varying reference attitude in finite time even when
the reference attitude is available only to a subset of the group members. The performance of the control
scheme derived here is illustrated through numerical simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, attitude coordination control for spacecraft for-
mation flying (SFF) has attracted significant attention. This is be-
cause SFF is an applicable technology formany spacemissions such
as Earthmonitoring, geodesy, deep space imaging and exploration,
and in-orbit servicing and maintenance of spacecraft.

A class of decentralized coordination tracking control laws
was developed in VanDyke and Hall (2006). Ren (2007) proposed
control laws for a team of spacecraft through local information
exchange. With consideration of external disturbances and time
delays, Jin, Jiang, and Sun (2008) presented a decentralized
variable structure controller for attitude coordination control of
multiple spacecraft. Using a state-dependent Riccati equation
technique, Changa, Park, and Choi (2009) proposed a decentralized
attitude coordination control algorithm for satellite formation
flying. Chung, Ahsun, and Slotine (2009) employed a Lagrangian
approach and nonlinear contraction analysis to study the problem
of cooperative tracking control for SFF. Cai and Huang (2014)
studied the leader–follower attitude consensus problem for a
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multiple rigid spacecraft system. In these works, the control laws
require full state measurements. Based on a bi-directional ring
topology, Lawton and Beard (2002) proposed a passivity based
formation control law for multi-spacecraft attitude alignment.
Later, Ren (2010) extended the work of Lawton and Beard (2002)
to the case of a general undirected connected communication
topology. In Lawton and Beard (2002) and Ren (2010), the case
when the final angular velocity is zero is considered, and the
extension of the obtained results to the attitude consensus tracking
is not straightforward. Abdessameud and Tayebi (2009) proposed a
velocity-free attitude tracking and synchronization control scheme
for a group of spacecraft. However, the common time-varying
reference attitude was assumed to be available to each spacecraft
in the group, which implies that there exists a central station
or a leader which cannot only obtain the group reference but
also communicate with each group member in the formation. The
requirement of such a leader introduces an apparent limitation
and the information relay will result in increased complexity
especially when there are a large number of spacecraft. Therefore,
in practical applications, it may be more realistic that a common
time-varying reference attitude is available only to a subset of
the group members. A velocity-free attitude coordination control
scheme has been designed for such a group of spacecraft in Zou,
Kumar, and Hou (2012).

The aforementioned attitude coordination laws achieve asymp-
totic stabilitywith infinite convergence time. In the SFF attitude co-
ordinated control, the finite-time control implies faster formation
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rearrangement capability, which leads to an enhanced application
efficiency of SFF. Finite-time attitude control for a single spacecraft
has been studied in Jin and Sun (2008), Zhu, Xia, and Fu (2011), Zou,
Kumar, Hou, and Liu (2011), Du, Li, and Qian (2011), Du and Li
(2012, 2013), Lu and Xia (2013) and Zou (2014). However, the
extension of the finite-time attitude control algorithms from the
single spacecraft case to the multiple spacecraft case is nontrivial
especially for the case when there exists a dynamic (virtual) leader
whose state is not accessible to all followers.

Several authors have investigated the finite-time attitude
cooperative control problem, e.g., Meng, Ren, and You (2010),
Du et al. (2011), Zou and Kumar (2012), Zhou, Hu, and Friswell
(2013); Zhou, Xia, Wang, and Fu (2015). In Meng et al. (2010),
based on a distributed sliding-mode estimator and a nonsingular
sliding mode surface, a distributed finite-time control law was
designed for a group of rigid bodies with a dynamic leader.
However, the control law is discontinuous, and the discontinuity
of the control input may cause chattering behavior and excite
unmodeled high-frequency system dynamics. Du et al. (2011)
proposed a distributed finite-time attitude control scheme for
SFF under a communication graph which has a hierarchical
structure. However, the control law is not applicable to finite-
time attitude coordination control for SFF under an undirected
communication graph. In Zhou et al. (2013), a quaternion-based
finite-time attitude coordination control law was proposed for
satellite formation flying. However, it is only shown that the vector
part of the quaternion of each member in the group can track
the desired trajectory, and it is not clear whether the attitude
synchronization and tracking can be achieved in finite time. Based
on the adaptive sliding mode control technique, decentralized
finite-time attitude control laws were proposed for multiple rigid
spacecraft in Zhou et al. (2015). However, each spacecraft in the
formation has its own reference trajectory, and the control laws
are not extendable to the case when there is a common time-
varying reference attitude which is available to only a subset of
the groupmembers. Furthermore, the aforementioned cooperative
finite-time attitude control laws rely on the availability of angular
velocity measurements. However, in practical applications, due to
either cost limitations or implementation considerations, angular
velocity measurements may not be available. Therefore, it is
highly desirable to design a velocity-free distributed attitude
coordination control law that can provide finite-time control for
SFF.

In this paper, we study finite-time velocity-free attitude coordi-
nation control for SFF under an undirected communication graph.
We consider the case when the common time-varying reference
attitude is available only to a subset of the team members. The at-
titude of each spacecraft in the formation is represented by mod-
ified Rodrigues parameters (MRPs). Using the finite-time observer
introduced in Zou (2014), a decentralized finite-time observer and
the homogeneous method, we propose a distributed semi-global
velocity-free finite-time attitude coordination control law for SFF.
In this paper, the term ‘‘semi-global stability’’ refers to the atti-
tude system using MRPs-based representation. The proposed con-
trol law is useful and valuable during formation acquisition and
deployment phases.

2. Background and preliminaries

2.1. Notation, definitions and lemmas

The notation ∥ · ∥ refers to the Euclidean norm of a vector
or the induced norm of a matrix. In represents the n × n iden-
tity matrix. λmax(·) and λmin(·) denote the maximum and mini-
mum eigenvalues of a matrix, respectively. The Kronecker product
is denoted by ⊗. Given a vector x = [x1, x2, . . . , xn]T ∈ Rn

and α ∈ R, define xα = [xα1 , x
α
2 , . . . , x

α
n ]

T , sigα(x) = [sgn(x1)|x1|α,
sgn(x2)|x2|α, . . . , sgn(xn)|xn|α]T , and diag (|x|α) = diag(|x1|α,
|x2|α, . . . , |xn|α), where sgn(·) denotes the signum function de-
fined by sgn(y) = 1 if y ≥ 0 and sgn(y) = −1 if y < 0, ∀y ∈ R. For
any λ > 0 and any set of real parameters ri > 0(i = 1, 2, . . . , n), a
dilation operator δrλ : Rn

−→ Rn is defined by δrλ(x1, x2, . . . , xn) =

(λr1x1, λr2x2, . . . , λrnxn), where r = [r1, r2, . . . , rn]T .

Definition 1 (Nakamura, Yamashita, & Nishitani, 2004). A contin-
uous function f : Rn

−→ R is homogeneous of degree k with
respect to the dilation δrλ if ∀λ > 0, f (δrλ(x)) = λkf (x), where
k > −min{ri}, i = 1, 2, . . . , n. A differential system ẋ = f (x) (or
a vector field f ), with continuous f : Rn

−→ Rn, is homogeneous
of degree k with respect to the dilation δrλ if ∀λ > 0, fi(δrλ(x)) =

λk+ri fi(x), i = 1, 2, . . . , n.

Definition 2 (Hong, Wang, & Cheng, 2006). Consider the following
system:

ẋ = f (x, t), f (0, t) = 0, x ∈ U ⊂ Rn (1)

where f : U × R+
→ Rn is continuous on an open neighborhood

U of the origin x = 0. The zero solution of (1) is (locally) finite-
time stable if it is Lyapunov stable and finite-time convergent in a
neighborhood U0 ⊆ U of the origin. The ‘‘finite-time convergence’’
means: If, for any initial condition x(t0) = x0 ∈ U0 at any given
initial time t0, there is a setting time T > 0, such that every solution
x(t; t0, x0) of system (1) is defined with x(t; t0, x0) ∈ U0 \ {0} for
t ∈ [t0, T ), limt→T x(t; t0, x0) = 0, and x(t; t0, x0) = 0, ∀t > T .
When U = U0 = Rn, the zero solution is said to be globally finite-
time stable.

Lemma 1 (Hong et al., 2006). Suppose that there is a Lyapunov
function V (x, t) defined on U1 × R+, where U1 ⊆ U ∈ Rn is a
neighborhood of the origin, and

V̇ (x, t) ≤ −lV a(x, t), ∀x ∈ U1 \ {0} (2)

where l > 0 and 0 < a < 1. Then, the origin of system (1) is locally
finite-time stable. The settling time satisfies T ≤

V1−a(x(t0),t0)
l(1−a) for a

given initial condition x(t0) ∈ U1.

Corollary 1. Suppose that there is a Lyapunov function V (x, t)
defined on U1 × R+, where U1 ⊆ U ∈ Rn is a neighborhood of the
origin, and

V̇ (x, t) ≤ −lV a(x, t)+ kV (x, t), ∀x ∈ U1 \ {0} (3)

where l, k > 0 and 0 < a < 1. Then, for a given initial condition
x(t0) at any initial time t0, the origin of system (1) is locally finite-
time stable if x(t0) ∈ {U1 ∩ U2}, where U2 = {x|V 1−a(x, t) < l/k} is
a neighborhood of the origin and satisfies that U2 ⊆ U1 or U1 ⊆ U2.
The settling time satisfies T ≤

V1−a(x(t0),t0)
(l−kV (x(t0),t0))(1−a) for a given initial

condition x(t0) ∈ {U1 ∩ U2}.

Proof. Note that if x ∈ {U1 ∩ U2}, then we have

V̇ (x, t) ≤ −lV a(x, t)+ kV (x, t)

= −(l − kV 1−a(x, t))V a(x, t) ≤ 0 (4)

which implies that V (x, t) ≤ V (x(t0), t0) for any initial condition
x(t0) ∈ {U1 ∩ U2}. Thus, (4) becomes

V̇ (x, t) ≤ −(l − kV 1−a(x(t0), t0))V a(x, t). (5)

The conclusion follows from Lemma 1. �

Lemma 2 (Qian & Lin, 2001). For any x ∈ R, y ∈ R, c > 0, d > 0,
and γ > 0, |x|c |y|d ≤ cγ |x|c+d/(c + d)+ d|y|c+d/[γ c/d(c + d)].
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