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In many applications in engineering, one is interested in tracking a dynamic system whose state evolves 
on a manifold. Solutions to such problems frequently must resort to nonlinear filtering techniques as 
many manifolds can be described as equality restrictions on higher-dimensional embedding spaces. We 
propose in this paper a new particle filtering (PF) method to track the states of dynamic systems that 
evolve according to a random walk on the unit sphere. We derive an approximation to the intractable 
optimal importance function and develop a Markov Chain Monte Carlo (MCMC) method to sample from 
it. The system state variable is then estimated via a Monte Carlo approximation of its intrinsic mean on 
the sphere, obtained from the Karcher mean of the particle set. As we verify via computer simulations, 
the proposed method shows improved performance compared to previous Constrained Extended Kalman 
filters and Bootstrap PF solutions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In many engineering problems, it is necessary to track the 
hidden state of a dynamic system from available observed data. 
Conventional tracking algorithms found in the literature such as 
standard Kalman filters or particle filters normally assume that the 
hidden state variables evolve on a linear Euclidean space, e.g. RL , 
where L is the dimension of the state vector. However, in sev-
eral real-world applications, e.g. attitude or pose estimation [1,2]
in navigation or robotics, communication channel equalization [3], 
and tracking problems using images [4] or microphone arrays [5], 
the underlying state vector is physically constrained to lie instead 
on a manifold, causing the aforementioned conventional tracking 
algorithms to underperform.

Previous work sought to address the problem of manifold-
constrained state vectors by proposing modifications to standard 
tracking algorithms. Constrained Kalman filters [6,7] for example 
can enforce quadratic constraints on the state variables, being able 
to deal with the case in which the states evolve on a unit sphere, 
but they tend to perform poorly with nonlinear observation mod-
els.

Particle Filters [2], which are better suited for nonlinear data 
models, can, on the other hand, be also formulated in more gen-

* Corresponding author.
E-mail addresses: claudio.bordin@ufabc.edu.br (C.J. Bordin), 

caiofigueredo@gmail.com (C.G. de Figueredo), bruno@ita.br (M.G.S. Bruno).

eral manifolds. For example, Ref. [8] considers a problem in which 
the hidden states evolve on a matrix Lie group. In [1], a particle 
filtering algorithm uses a mixture Bingham model to approximate 
the posterior distribution of unit-norm quaternions. In [5] and [9], 
bootstrap particle filters employing a blind (i.e. data-independent) 
importance function were derived for a model in which the state 
evolves on a unit sphere according to a Von Mises–Fisher random 
walk. Finally, in [3], we considered both supervised and unsuper-
vised estimation of a time-invariant, unit-norm digital communica-
tion channel assuming a linear observation model at the receiver’s 
end.

In this paper, we introduce a novel particle filter algorithm to 
track a time-variant dynamic state vector on the unit hypersphere 
S

L−1 embedded in RL , where L is an arbitrary integer number. Our 
main original contributions in this work are twofold. First, we de-
rive a new Fisher–Bingham (FB) approximation to the intractable 
optimal importance function on the unit hypersphere. The pro-
posed approximation extends previous results in [3] to a more 
general model with time-varying states and an arbitrary nonlin-
ear observation equation. Second, we propose an iterative Markov 
Chain Monte Carlo (MCMC) method to sample from the approxi-
mated importance function on SL−1. As we show in the paper, the 
proposed Fisher–Bingham parametric approximation to the opti-
mal importance function is the equivalent on SL−1 to the Gaussian 
approximation to the optimal importance function introduced in 
[10] for particle filters specified in RL with arbitrary nonlinear ob-
servation models. This equivalence comes from the fact that the 

https://doi.org/10.1016/j.dsp.2018.07.001
1051-2004/© 2018 Elsevier Inc. All rights reserved.
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Fisher–Bingham density is the result of conditioning a Gaussian 
random vector to lie on the unit sphere [11].

The remainder of this paper is organized as follows: in Sec. 2
we introduce the problem under consideration and, in Sec. 3, we 
formulate its solution via particle filters on manifolds. In Sec. 4, we 
derive the FB approximation to the optimal importance function, 
describe the MCMC algorithm to sample from it, show the corre-
sponding analytical expression to update the particle importance 
weights at each time instant, and introduce a method to estimate 
the hidden state vector from the weighted importance function 
samples by their Karcher mean [12], which, as we argue in the 
paper, are, from a differential geometric point of view, the equiva-
lent on SL−1 to the minimum-mean-square-error (MMSE) estimate 
on RL . In Section 5, we particularize the proposed method to the 
solution of the problem of supervised identification of frequency-
selective communication channels and show via Monte Carlo simu-
lation that our novel PF outperforms both the bootstrap PF in [5,9]
and a standard constrained extended Kalman filter (EKF) when a 
strongly nonlinear amplifier is assumed at the receiver. Finally, we 
present the conclusions of our work in Sec. 6.

2. Problem setup

In the remainder of the paper, we use normal lowercase letters 
to denote scalars, bold lowercase letters to denote vectors, and up-
percase letters to denote matrices. The distinction between real, 
random variables, and samples of random variables is implied in 
context.

Let sn ∈ S
L−1 denote the state of a time-varying system at time 

instant n and SL−1 = {s ∈R
L : ‖s‖ = 1} the unit L-sphere. The state 

sn is supposed to evolve according to a Von Mises–Fisher random 
walk on the sphere, i.e.,

sn|sn−1 ∼ vMF(sn|κ; sn−1), n > 0, (1)

with1 p(s0) ∝ 1, where

vMF(s|κ;a) � 1

cvM F (κ, L)
exp

{
κaT s

}
(2)

indicates a Von Mises–Fisher (vMF) [13] probability density func-
tion (p.d.f.), s, a ∈ S

L−1, κ ∈ R
+ is a known hyperparameter, and 

cvM F is the vMF p.d.f. normalization constant, given by

cvM F (κ, L) = κ L/2−1

(2π)L/2 J L/2−1(κ)
, (3)

where Jν denotes the modified Bessel function of the first kind 
and order ν .

The system states give rise to the observation sequence

yn = g(θ T
n sn) + vn, n > 0, (4)

where θn ∈ R
L is a known parameter vector, g(·) denotes a possibly 

nonlinear function, and vn is a sequence of zero-mean, indepen-
dent Gaussian random variables of variance σ 2.

Considering the model described by (1)–(4), we aim at recur-
sively determining the filtering density p(sn|y1:n), where y1:n �
{y1, . . . , yn}. It can be verified that even in the case in which g(·)
is linear, there is no known closed form to the sought filtering 
density, which prompted us to resort to particle filters.

1 We denote by p(·) the probability density function of a random variable or 
vector.

Algorithm 1 Bootstrap Particle Filter.
for n > 0 do

for p = 1 : P do
•Draw s(q)

n ∼ vMF(sn|κ; sn−1).
•Update w(q)

n via (8).
end for
•Normalize the weights, i.e., ∑Q

q=1 w(q)
n = 1.

•Estimate šn iterating (28) until ‖šn(i + 1) − šn(i)‖ is sufficiently small.
•Resample the particle set {s(q)

n , w(q)
n }Q

q=1.
end for

3. Particle filters

Particle filters [14] (PF) are well-established techniques for ap-
proximating filtering densities for nonlinear or non-Gaussian esti-
mation problems. PF approximate the states’ posterior probabilities 
by the weighted sum

Prob({s0:n ∈ G}|y1:n) ≈
Q∑

q=1

w(q)
n δ

s(q)
0:n

(G), (5)

where G is a subset of SL−1 × · · · × S
L−1︸ ︷︷ ︸

(n+1) times

, δx(G) is a Dirac mea-

sure, defined as 1 if x ∈ G and 0 otherwise, s(q)
0:n are the so-

called particles, sequentially sampled from the importance function
s(q)

n ∼ π(sn|s(q)
0:n−1, y1:n), Q � 1 denotes the number of particles, 

and w(q)
n the particle weights, which obey 

∑Q
q=1 w(q)

n = 1 and can 
be recursively determined as [15]

w(q)
n ∝ w(q)

n−1

p(yn|s(q)
0:n, y1:n−1) p(s(q)

n |s(q)
0:n−1, y1:n−1)

π(s(q)
n |s(q)

0:n−1, y1:n)
. (6)

Considering that sn is Markovian as a consequence of (1) and that 
the likelihood function (4) only depends on sn , Eq. (6) simplifies to

w(q)
n ∝ w(q)

n−1

p(yn|s(q)
n ) p(s(q)

n |s(q)
n−1)

π(s(q)
n |s(q)

0:n−1, y1:n)
. (7)

Choosing the so-called prior importance function, i.e., the tran-
sition density π(sn|s0:n−1, y1:n) = p(sn|sn−1) = vMF(sn|κ; sn−1)

leads to the algorithm known as bootstrap filter (Algorithm 1). In 
this case, the weights are updated according to

w(q)
n ∝ w(q)

n−1 p(yn|s(q)
n ). (8)

In practice, the weighted particle set 
{

s(q)
n , w(q)

n

}Q

q=1
degener-

ates [14] after a few iterations unless some measure to restore 
weight uniformity is performed. To this aim, all particle filters in 
this work employ a residual resampling [16] step at each iteration.
Comparison to previous work Note that, for a linear function g(·)
in (4), the bootstrap particle filter described in Algorithm 1 is 
a particular instance of the algorithm introduced in [9], as Vk,L , 
the Stiefel manifold in RL , reduces to the unit sphere SL−1 for 
k = 1 [9]. Reference [5], on the other hand, also proposes a boot-
strap particle filter on SL−1 that employs a Von Mises–Fisher prior 
importance function similar to the one used in our Algorithm 1. 
However, the observations in [5] are also constrained to be on 
the unit L-sphere whereas, in our work, they lie on the Euclidian 
space RL . Due to the aforementioned difference in the observa-
tion model, the algorithm in [5] is not directly comparable to the 
algorithms proposed in this paper.

The main drawback, however, of the filters proposed both in [9]
and in [5] is the use of a blind (i.e. data-independent) importance 
function, which generally leads to a rapid decrease in the effective 
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