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a b s t r a c t

This paper presents a unified approach to time-aggregated Markov decision processes (MDPs) with an
average cost criterion. The approach is based on a framework inwhich a time-aggregatedMDP constitutes
a semi-Markov decision process (SMDP). By analyzing the performance sensitivity formulas of this SMDP,
a number of optimization algorithms for time aggregated MDPs, including those previously reported in
the literature, can be developed in a simple and intuitive way.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Markov decision processes (MDPs) often serve as common
models, and are widely applied in a variety of fields, including
control, artificial intelligence and operations research (Puterman,
1994; Sutton & Barto, 1998). Themajor difficulty in solvingMDPs is
a problem called the ‘‘curse of dimensionality’’ (Puterman, 1994).
Reducing the dimensionality of a state space can substantially im-
prove the computational efficiency of MDP solutions. The time
aggregation approach (Cao, Ren, Bhatnagar, Fu, & Marcus, 2002)
affords MDPs state reduction by dividing the process into time
segments according to certain state subsets. Performance gradient
estimation for Markov processes with time aggregation was pre-
sented using the stochastic recursive method and likelihood ratio
in Zhang and Ho (1991). In addition, a number of optimization al-
gorithms, including policy iteration (Cao et al., 2002; Ren & Krogh,
2005) and value iteration algorithms (Arruda & Fragoso, 2011; Ren
& Krogh, 2005; Sun, Zhao, & Luh, 2007), have been developed for
time-aggregated MDPs. However, the aforementioned algorithms
were proposed independently of one another, and the relationship
between them remains unclear. The objectives of this paper are
to provide a unified formulation from the performance sensitiv-
ity point of view proposed in Cao (2007) to relate the previously
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reported algorithms systematically and to propose new optimiza-
tion algorithms for time-aggregated MDPs.

We first show that a time-aggregated MDP essentially consti-
tutes a semi-Markov decision process (SMDP). Then, we present a
unified approach to time-aggregated MDP using performance sen-
sitivity of this SMDP. Our approach is motivated by the sensitivity-
based approach (Cao, 2007; Cao& Chen, 1997), where performance
sensitivity formulas provide a unified framework for MDPs. An in-
finitesimal generator-based performance sensitivity formula was
proposed for SMDPs in Cao (2003), which we call a continuous
time-type formula in this paper. We then present a discrete time-
type performance sensitivity formula. By analyzing these perfor-
mance sensitivity formulas, we propose a unified approach to
time-aggregated MDPs from the continuous-time and discrete-
time perspectives. The proposed approach unifies and develops a
number of optimization algorithms for time-aggregated MDPs, in-
cluding those previously reported in the literature, in an intuitive
and simple way. This approach is an extension of the sensitivity-
based approach (Cao, 2007), and provides new insights to time-
aggregated MDPs. Its significance can be described as follows:
(1) A unified formulation for policy iteration algorithms is obtained
by directly comparing two types of performance difference formu-
las, an approach that is more intuitive and simple than those in
the previous literature. (2) Different value iteration algorithms are
investigated in a unified way. This unification demonstrates the
differences in the development of value iteration algorithms us-
ing two types of Bellman optimality equations. On this basis, we
present a stochastic shortest path (SSP) value iteration and a gen-
eralized standard value iteration. The SSP value iteration preserves
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the weighted sup-norm contraction property (Bertsekas, 1998),
which is helpful for developing asynchronous iterations. The gen-
eralized standard value iteration can be more intuitively under-
stood as a traditional value iteration than the data-transformation
method in Arruda and Fragoso (2011) or Puterman (1994), and
it obviates the need to solve several average-cost MDPs or SSPs
during the process of value iteration. (3) Finally, the proposed
approach provides a performance gradient-based optimization al-
gorithm that can be applied to cases in which the transition prob-
abilities are unknown.

2. Time-aggregated Markov decision processes

We briefly describe the standard MDP and time-aggregated
MDP by following the notations in Cao et al. (2002). Consider a
time-homogeneous discrete-time MDP X = {Xt , t = 0, 1, . . .} on
a finite state space S = {1, 2, . . . ,M}. At any transition time t with
Xt = i ∈ S, action a is taken from a feasible action space A. That
action determines the transition probabilities pa(i, j) from state i
to state j, and a cost f (i, a) is incurred. In this paper, we consider
a set of stationary policies Πs, which means that a policy L ∈ Πs
is a mapping from state space S to action space A. Thus, policy L
determines the evolution of the MDP by following the transition
probability matrix PL with PL

= [pL(i)(i, j)]Mi,j=1 and cost vector
f L

= [f (1, L(1)), . . . , f (M, L(M))]T , where the superscript ‘‘T ’’
denotes the transpose.

Assume that the MDP is ergodic under any policy. Let πL
=

[πL(1), . . . , πL(M)] be the row vector representing the steady-
state probability of Markov chain X under policy L. Then, we have

πLPL
= πL and πLe = 1,

where e = [1, 1, . . . , 1]T . We consider the following average cost
performance, which is well defined and does not depend on the
initial state,

ηL
= lim

T→∞

1
T
EL


T−1
t=0

f (Xt , At)|X0 = i


= πLf L, (1)

for ∀ i ∈ S, where EL denotes the expectation under policy L
and At denotes the action at time t . The objective is to find an
optimal policy L∗ that minimizes the average cost ηL, i.e., L∗

∈

argminL∈Πs ηL.
The time aggregation approach (Cao et al., 2002) assumes that

state space S can be divided into subset S1 and its complementary
setS2 = S−S1. Actions can be taken only for the states inS1.With-
out loss of generality, let S1 = {1, 2, . . . ,M1} and S2 = {M1 + 1,
. . . ,M}. Under these assumptions, PL and f L can be partitioned
according to S1 and S2, as follows

PL
=


PL

S1S1
PL

S1S2
PS2S1 PS2S2


and f L

=


f L
S1
fS2


.

Define τ0 = 0 and τl = min{t > τl−1|Xt ∈ S1}, l = 1, 2, . . . , as
the time points at which the process arrives in S1, and denote by
Y = {Yl, l = 0, 1, . . .} the aggregated chain that records the states
visited at those points. Thus, the relation between X and Y is given
by Yl = Xτl . Let P̃

L and π̃L be the transition matrix and steady-
state probability row vector of aggregated chain Y under policy L.
From Cao et al. (2002),

P̃L
= PL

S1S1
+ PL

S1S2
(I − PS2S2)

−1PS2S1 . (2)

Time points τl, l = 0, 1, 2, . . . , divide the process into numerous
segments (Xτl , Xτl+1, . . . , Xτl+1−1). In each segment, the action
needs to be chosen only in the first state and no decisions aremade

Fig. 1. Time-aggregated MDP and its corresponding SMDP.

in other states. Thus, the expected total cost of a segment that starts
from i ∈ S1 and a ∈ A is

Hf (i, a) = E

Rl

Xτl = i, Aτl = a

, i ∈ S1, l = 0, 1, 2, . . . ,

where Rl = f (Xτl , Aτl) +
τl+1−τl−1

k=1 f (Xτl+k). Let HL
f = [Hf (1,

L(1)), . . . ,Hf (M1, L(M1))]
T denote the expected total cost vector

under policy L, which can be computed by (see Cao et al., 2002)

HL
f = f L

S1
+ PL

S1S2
(I − PS2S2)

−1fS2 . (3)

Let HL
1 = [H1(1, L(1)), . . . ,H1(M1, L(M1))]

T denote the case
that f (i, a) = 1, i ∈ S1, a ∈ A and f (i) = 1, i ∈ S2, and thus
H1(i, L(i)) is the expected length of a segment that starts from
i ∈ S1 under policyL. The average cost of the originalMDP defined
in (1) can be computed by (see Cao et al., 2002)

ηL
=

π̃LHL
f

π̃LHL
1

, for any L ∈ Πs. (4)

After applying the time aggregation technique, the original MDP
essentially constitutes an SMDP as depicted in Fig. 1. The cor-
responding SMDP has a state space S1 and an action space A.
The time points τ0, τ1, . . . in the MDP are the successive deci-
sion epochs of the SMDP. The state evolution between τl and τl+1,
l = 0, 1, 2, . . . , is the natural process in the SMDP, whereas aggre-
gated chain Y constitutes an embeddedMarkov chain of the SMDP.
Time intervals τl+1 − τl, l = 0, 1, 2 . . . are the sojourn times of
the SMDP, and its expected value is H1(i, a) if a ∈ A is taken in
the starting state i of the segment. The total cost Hf (i, a) is the ac-
cumulated expected cost between two successive decision epochs,
given that the SMDP occupies state i, and action a is taken in the
first decision epoch.

3. Performance sensitivity

In this section, we analyze the structure of performance
sensitivity of the time-aggregated MDP using the SMDP.

An infinitesimal generator AL
= ΛL(P̃L

− I) is defined in Cao
(2003), where ΛL

= diag{ 1
H1(1,L(1)) , . . . ,

1
H1(M1,L(M1))

}. Let pL be
the steady-state probability row vector of the SMDP, and then pL

satisfies pLAL
= 0, pLe = 1. From Ross (1996), we have

pL
=

π̃L(ΛL)−1

π̃LHL
1

.

Define a cost-rate function vector under policy L as ΛLHL
f . Then,

we have

ηL
=

π̃L(ΛL)−1

π̃LHL
1

ΛLHL
f = pLΛLHL

f .

Thus, performance (4) is equivalent to the average cost perfor-
mance with cost-rate function ΛLHL

f in Cao (2003).
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