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This paper presents a unified approach to time-aggregated Markov decision processes (MDPs) with an
average cost criterion. The approach is based on a framework in which a time-aggregated MDP constitutes
a semi-Markov decision process (SMDP). By analyzing the performance sensitivity formulas of this SMDP,
a number of optimization algorithms for time aggregated MDPs, including those previously reported in
the literature, can be developed in a simple and intuitive way.
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1. Introduction

Markov decision processes (MDPs) often serve as common
models, and are widely applied in a variety of fields, including
control, artificial intelligence and operations research (Puterman,
1994; Sutton & Barto, 1998). The major difficulty in solving MDPs is
a problem called the “curse of dimensionality” (Puterman, 1994).
Reducing the dimensionality of a state space can substantially im-
prove the computational efficiency of MDP solutions. The time
aggregation approach (Cao, Ren, Bhatnagar, Fu, & Marcus, 2002)
affords MDPs state reduction by dividing the process into time
segments according to certain state subsets. Performance gradient
estimation for Markov processes with time aggregation was pre-
sented using the stochastic recursive method and likelihood ratio
in Zhang and Ho (1991). In addition, a number of optimization al-
gorithms, including policy iteration (Cao et al., 2002; Ren & Krogh,
2005) and value iteration algorithms (Arruda & Fragoso, 2011; Ren
& Krogh, 2005; Sun, Zhao, & Luh, 2007), have been developed for
time-aggregated MDPs. However, the aforementioned algorithms
were proposed independently of one another, and the relationship
between them remains unclear. The objectives of this paper are
to provide a unified formulation from the performance sensitiv-
ity point of view proposed in Cao (2007) to relate the previously
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reported algorithms systematically and to propose new optimiza-
tion algorithms for time-aggregated MDPs.

We first show that a time-aggregated MDP essentially consti-
tutes a semi-Markov decision process (SMDP). Then, we present a
unified approach to time-aggregated MDP using performance sen-
sitivity of this SMDP. Our approach is motivated by the sensitivity-
based approach (Cao, 2007; Cao & Chen, 1997), where performance
sensitivity formulas provide a unified framework for MDPs. An in-
finitesimal generator-based performance sensitivity formula was
proposed for SMDPs in Cao (2003), which we call a continuous
time-type formula in this paper. We then present a discrete time-
type performance sensitivity formula. By analyzing these perfor-
mance sensitivity formulas, we propose a unified approach to
time-aggregated MDPs from the continuous-time and discrete-
time perspectives. The proposed approach unifies and develops a
number of optimization algorithms for time-aggregated MDPs, in-
cluding those previously reported in the literature, in an intuitive
and simple way. This approach is an extension of the sensitivity-
based approach (Cao, 2007), and provides new insights to time-
aggregated MDPs. Its significance can be described as follows:
(1) A unified formulation for policy iteration algorithms is obtained
by directly comparing two types of performance difference formu-
las, an approach that is more intuitive and simple than those in
the previous literature. (2) Different value iteration algorithms are
investigated in a unified way. This unification demonstrates the
differences in the development of value iteration algorithms us-
ing two types of Bellman optimality equations. On this basis, we
present a stochastic shortest path (SSP) value iteration and a gen-
eralized standard value iteration. The SSP value iteration preserves
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the weighted sup-norm contraction property (Bertsekas, 1998),
which is helpful for developing asynchronous iterations. The gen-
eralized standard value iteration can be more intuitively under-
stood as a traditional value iteration than the data-transformation
method in Arruda and Fragoso (2011) or Puterman (1994), and
it obviates the need to solve several average-cost MDPs or SSPs
during the process of value iteration. (3) Finally, the proposed
approach provides a performance gradient-based optimization al-
gorithm that can be applied to cases in which the transition prob-
abilities are unknown.

2. Time-aggregated Markov decision processes

We briefly describe the standard MDP and time-aggregated
MDP by following the notations in Cao et al. (2002). Consider a
time-homogeneous discrete-time MDP X = {X;,t = 0,1, ...} on
afinite state space § = {1, 2, ..., M}. Atany transition time t with
X; = i € 4, action a is taken from a feasible action space +. That
action determines the transition probabilities p®(i, j) from state i
to state j, and a cost f (i, a) is incurred. In this paper, we consider
a set of stationary policies IT;, which means that a policy £ € IT;
is a mapping from state space 4§ to action space +. Thus, policy £
determines the evolution of the MDP by following the transition
probability matrix P with P£ = [p*® (i, )]}%_, and cost vector
£ =1fAa,£),...,f(M, £LM))]", where the superscript “T”
denotes the transpose.

Assume that the MDP is ergodic under any policy. Let 7 =
[r£(1), ..., m£(M)] be the row vector representing the steady-
state probability of Markov chain X under policy «£. Then, we have
LpsL £

T =nf and nfe=1,

wheree = [1, 1, ..., 1]7. We consider the following average cost
performance, which is well defined and does not depend on the
initial state,

£ N «— ; LeL
n _TILTOTE |:tZO:f(XuAr)|X0—1i| =n"f, (1)
for Vi € 8, where E£ denotes the expectation under policy £
and A; denotes the action at time t. The objective is to find an
optimal policy £* that minimizes the average cost ¥, i.e., £* €
arg mingcp, nt.

The time aggregation approach (Cao et al., 2002) assumes that
state space 4 can be divided into subset §; and its complementary
set 8§, = §—4&1.Actions can be taken only for the states in §;. With-
out loss of generality, let 8; = {1,2,...,M;}and §, = {M; + 1,
..., M}. Under these assumptions, P£ and f£ can be partitioned
according to 47 and 4, as follows

L L L
Pt = |:P5151 P5132] and ff = [fsl].

P5251 P5252 fz;z

Define tp = O and 7y = min{t > 7_1|X; € 41}, = 1,2,...,as
the time points at which the process arrives in 41, and denote by
Y ={Y,1=0,1,...} the aggregated chain that records the states
visited at those points. Thus, the relation between X and Y is given
by Y; = X,. Let P and 7 be the transition matrix and steady-
state probability row vector of aggregated chain Y under policy £.
From Cao et al. (2002),

1343 :P/}C]’Sl +P:3£152(I—P8232)_1P5251' (2)

Time points 7;,] = 0, 1, 2, ..., divide the process into numerous
segments (X, Xy41, ..., Xq,,—1). In each segment, the action
needs to be chosen only in the first state and no decisions are made

Segment

Fig. 1. Time-aggregated MDP and its corresponding SMDP.

in other states. Thus, the expected total cost of a segment that starts
fromi € §;anda € A is

Hi(,a) = E [R,

Xq=iAy=a]. ies, =012, ..,

where R = f(Xq.Ag) + Y™ f(Xai)- Let HE = [H (1,
L(1)), ..., H(My, £(M7))]" denote the expected total cost vector
under policy £, which can be computed by (see Cao et al., 2002)

Hf = +P§ o (1 — Py,s)) " 'f,. 3)
Let Hf = [Hi(1, £(1)),..., Hi(My, £L(M;))]" denote the case
that f(i,a) = 1,i € 41,a € Aand f(i) = 1,i € 4,, and thus
Hq(i, L(i)) is the expected length of a segment that starts from

i € 87 under policy £. The average cost of the original MDP defined
in (1) can be computed by (see Cao et al., 2002)

~LpgL
nec _ T Hf
ALHE'

for any «£ € IT,. (4)

After applying the time aggregation technique, the original MDP
essentially constitutes an SMDP as depicted in Fig. 1. The cor-
responding SMDP has a state space §; and an action space .
The time points 7o, 71, ... in the MDP are the successive deci-
sion epochs of the SMDP. The state evolution between t; and 71,
1=0,1,2,...,isthe natural process in the SMDP, whereas aggre-
gated chain Y constitutes an embedded Markov chain of the SMDP.
Time intervals 7,1 — 75,1 = 0, 1,2... are the sojourn times of
the SMDP, and its expected value is H,(i, a) if a € » is taken in
the starting state i of the segment. The total cost H; (i, a) is the ac-
cumulated expected cost between two successive decision epochs,
given that the SMDP occupies state i, and action a is taken in the
first decision epoch.

3. Performance sensitivity

In this section, we analyze the structure of performance
sensitivity of the time-aggregated MDP using the SMDP.
An infinitesimal generator AY = AL (P£ — ) is defined in Cao

(2003), where AL = diag{Hl(llc(l)), el H1(M1,l£(M1)) }. Let pt be
the steady-state probability row vector of the SMDP, and then p*

satisfies p£A* = 0, pfe = 1. From Ross (1996), we have
r ﬁI(AI)—l
nLHf

Define a cost-rate function vector under policy £ as A’CHf”C. Then,
we have
~ LA Ly—1
e (A7) Lyl £ oa Lyl
n 77[,61_1{6 f p f
Thus, performance (4) is equivalent to the average cost perfor-
mance with cost-rate function A"CHf“C in Cao (2003).
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