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a b s t r a c t

This paper deals with absolute stability of a Lur’e system with positive feedback where the linear
subsystem exhibits negative-imaginary frequency response and the nonlinearity connected in feedback
is time-invariant, memoryless and slope-restricted. The proposed absolute stability criterion requires
the linear subsystem to belong to the strongly strict negative-imaginary class. Along with that, positive
definiteness of a symmetric matrix needs to be ensured, where the symmetric matrix is obtained by
subtracting the dc-gain matrix of the linear subsystem from a strictly positive diagonal matrix with
elements indicating the reciprocal of the maximum slope bounds of the nonlinearities. The stability
criterion is proved using a Lur’e–Postnikov-type Lyapunov function. Numerical examples are presented
to demonstrate the proposed results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For a Lur’e system (Desoer & Vidyasagar, 1975; Khalil, 2002),
the absolute stability (Desoer & Vidyasagar, 1975; Khalil, 2002;
Narendra & Taylor, 1973) indicates that the closed-loop has a
globally uniformly asymptotically stable equilibrium point at the
origin for all nonlinearities in a given sector. In this paper, an
absolute stability criterion is searched for a Lur’e system when
the linear dynamics belongs to the negative-imaginary (NI) system
class (Lanzon & Petersen, 2008; Petersen & Lanzon, 2010) and
the nonlinearity connected via positive feedback is time-invariant,
memoryless, and slope-restricted.

Negative-imaginary systems have recently been introduced
in Lanzon and Petersen (2008) and Petersen and Lanzon (2010)
and have readily attracted attention of the system-theoretic
research communities. The NI theory has so far been explored
and extended in different directions: viz., stability analysis for
interconnected NI and strictly NI (SNI) systems (see e.g. Lanzon
& Petersen, 2008; Mabrok, Kallapur, Petersen, & Lanzon, 2014a;
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Petersen & Lanzon, 2010); lossless system properties in Xiong,
Petersen, and Lanzon (2012); stability analysis for interconnected
systems with ‘mixed’ properties (see e.g. Das, Pota, & Petersen,
2013; Patra & Lanzon, 2011); controller synthesis and performance
analysis (see Song, Lanzon, Patra, & Petersen, 2010, 2012a,b);
and in applications with practical relevances (see e.g. Bhikkaji,
Moheimani, & Petersen, 2012; Mabrok et al., 2014a; Mabrok,
Kallapur, Petersen, & Lanzon, 2014b; Petersen & Lanzon, 2010).
But very limited attention has been paid toward finding the
absolute stability conditions for NI systems. This serves as the
primary motivation behind our present work. In addition, we
often encounter practical systems with a linear time-invariant
(LTI) part preceded by a saturation, dead-zone or a slope-
restricted nonlinearity of similar kind. If these dynamics, in closed-
loop, can be modeled as interconnection of NI systems with
slope-restricted nonlinearities in positive feedback, then the
results of this work could be crucial to ensure asymptotic stability
of the overall nonlinear feedback system. Moreover, absolute
stability theory can also be readily cast as a robust stability problem
(seeHaddad& Bernstein, 1993). This indicates the possibilities that
the results in this framework might initiate further research in the
area of robust control involving NI (or subclass of NI) systems.

Since passivity theorem (Brogliato, Lozano,Maschke, & Egeland,
2007; Khalil, 2002) plays the central role, the interconnection
in absolute stability analysis is generally considered to be with
negative feedback. The use of positive feedback in absolute stability
framework makes this present work fundamentally distinct from
most of the extensive literature available on absolute stability
for slope-restricted nonlinearities (e.g. Haddad, 1997; Haddad &
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Kapila, 1995; Park, 2002; Park, Banjerdpongchai, & Kailath, 1998;
Singh, 1984; Suykens, Vandewalle, & De Moor, 1998; Turner, Kerr,
& Postlethwaite, 2009; Turner, Kerr, Postlethwaite, & Sofrony,
2010; Zames & Falb, 1968). A part of the work presented in Ouyang
and Jayawardhana (2014) is one relevant contribution, where
stability of a positive feedback interconnection of a linear system
and a counter-clockwise (CCW) Duhem hysteresis operator is
analyzed. The analysis is specifically based on the CCW properties
(see Angeli, 2006) of the linear system, which are closely related
to the NI properties. However, this scheme lacks generality as it is
only applicable when the nonlinearity is modeled using a specific
approach.

The absolute stability criterion proposed in this work requires
the LTI subsystem to satisfy the properties of a subclass of NI
systems. This subclass, named strongly strict negative-imaginary
(SSNI) systems, is an existing category in the NI literature and is
addressed in detail in Lanzon, Song, Patra, and Petersen (2011).
Given any multiple decoupled nonlinearity of the time-invariant
memoryless slope-restricted family connected to the LTI subsys-
tem via positive feedback, the proposed theorem states that the
overall closed-loop system is absolutely stable if the linear dy-
namics with minimal representation belongs to the strongly strict
negative-imaginary system and a dc-gain condition holds. With
the help of a sector transformation (see Narendra & Taylor, 1973;
Paré, Hassibi, & How, 2001) on the nonlinearity and a subsequent
loop-transformation (Paré et al., 2001), the overall closed-loop sys-
tem takes a decomposed form. Based on the decomposed parts, a
Lur’e–Postnikov-type Lyapunov function is constructed and global
asymptotic convergence of state trajectories to the origin is es-
tablished for the positive feedback interconnection. The results
emerge equally significant from both NI and absolute stability per-
spectives. Stability conditions in this proposed framework can be
easily tested using existing semidefinite programming (SDP) tool-
boxes.

The rest of the paper is organized as follows: in Section 2
useful notations are given. Section 3 illustrates some fundamental
concepts, definitions and lemmas as a background of this work.
The classes of subsystems of the feedback interconnection are also
defined. The loop-transformation and subsequent decomposition
are presented in Section 4which streamline themain results of this
paper. The stability analysis result is discussed in Section 5. Two
simple examples are presented in Section 6which demonstrate the
stability result in the proposed framework.

2. Notation

Notation is standard throughout. Let R and C be the field of
real and complex numbers, respectively and let R+ correspond to
the set of non-negative real numbers. Rm×n denotes the set of real
matrices of dimension (m×n).ℜ[s] indicates the real part of s ∈ C.
The terminology ‘proper’ transfer function includes both ‘strictly-
proper’ and ‘bi-proper’ transfer functions. Rm×n represents the set
of all proper real-rational transfer function matrices of dimension
(m × n). RH∞ denotes the set of all proper real-rational stable
transfer function matrices. Let (·)T and (·)∗ indicate transpose
and complex conjugate transpose, respectively. A−T represents the
shorthand of (A−1)T . The notation diag(µ1, µ2, . . . , µm) is used
as a shorthand for the diagonal matrix with diagonal elements
µi, i = 1, . . . ,m. LetLm

2 [0,∞) indicate the Lebesgue spacewhich
consists of all measurable functions f : [0,∞) → Rm such
that


∞

0 f (t)T f (t) dt < ∞. L2e denotes the extended Lebesgue

space. G(s) s
=


A B
C D


indicates a state-space realization of a

real-rational proper transfer function matrix G(s) ∈ Rm×n, that
is, G(s) = C(sI − A)−1B + D. Similar notation, with s

= replaced by
s
=
min

, is used to denote a minimal realization.

3. Preliminaries

In this section, some useful definitions and lemmas are
presented. A brief on the properties of the class of nonlinearities
considered in this work is provided and a sector-transformation
is discussed, which together streamline the main results of this
paper.

Definition 1 (Brogliato et al., 2007). A function f : R+ → R is said
to be absolutely continuous on R+ if for all ϵ > 0 there exists a
δ > 0 such that

l
k=1 |f (bk)− f (ak)| < ϵ for every finite number

of disjoint intervals (ak, bk), k = 1, . . . , l, with [ak, bk] ⊂ R+ andl
k=1(bk − ak) < δ.

The space of absolutely continuous functions f : R+ → R is
denoted by AC(R+). If u(t) ∈ AC(R+), then the time derivative
u̇(t) :=

d
dt u(t) exists as a measurable function that is bounded

almost everywhere.

Definition 2 (Turner et al., 2010).A single valued functionφ : R →

R, differentiable with respect to its input, is said to have a slope-
restriction [0, µ) if

0 ≤
φ(u)− φ(v)

u − v
< µ ∀u, v ∈ R, u ≠ v, 0 < µ < ∞ (1)

holds.

From the lower bound itself, monotonicity of the nonlinearity φ
is evident. Assuming the nonlinearity is memoryless and φ(0) =

0, putting v = 0 in (1) yields sector-boundedness of φ as well
with the same bound µ. Let φ(·) be a nonlinear operator and
φ : AC(R+) → AC(R+). If u(t2) is a sufficiently small local
perturbation of u(t1) on an interval |u(t1)− u(t2)| < δ ∀t ∈ [t1, t2]
with δ > 0, then using inequality (1), a local Lipschitz condition on
φ(·)with respect to input u,

|φ(u(t1))− φ(u(t2))| ≤ φ̂′
|u(t1)− u(t2)| , (2)

can be ascertained, where 0 ≤ φ′(u) :=
dφ(u)
du < φ̂′ < ∞.

In this case, φ̂′
= µ is the maximum local slope bound of the

nonlinear function. Hereafter, the shorthand notation ∂φ ∈ [0, µ)
is used to denote that the function φ is slope-restricted, and the
finite maximum slope bound is µ. Later in Section 3.2, it will be
shown that nonlinearitieswith slope-restriction of finite sector can
be transformed to nonlinearities with slope-restriction of infinite
sector.

A brief on the concept of negative-imaginary systems along
with relevant definitions and lemmas from the NI literature
(see e.g. Ferrante & Ntogramatzidis, 2014; Lanzon & Petersen,
2008; Mabrok, Kallapur, Petersen, & Lanzon, 2011; Petersen &
Lanzon, 2010; Xiong, Petersen, & Lanzon, 2010) are presented
next. Negative-imaginary systems (say R(s)) are Lyapunov stable
systems with equal number of inputs and outputs satisfying the
frequency domain condition: j [R(jω)− R(jω)∗] ≥ 0 for all ω ∈

(0,∞). In SISO setting, the positive frequency branch of the
Nyquist plot of a typical NI system illustrates that the imaginary
part of the frequency response is always non-positive; and rather
strictly negative for strictly negative-imaginary (SNI) systems. A
formal definition of negative-imaginary system is now presented
as in Xiong et al. (2010).

Definition 3 (Xiong et al., 2010). A square real-rational proper
transfer function matrix R(s) is said to be negative-imaginary (NI)
if
(1) R(s) has no pole at the origin and in ℜ[s] > 0;
(2) j [R(jω)− R(jω)∗] ≥ 0 for all ω ∈ (0,∞) except values of ω
where jω is a pole of R(s);
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