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Coded diffraction patterns (CDPs) recorded by optical detectors are often affected by Poisson noise in 
optical applications. How to recover the image of interest from few noisy CDPs is a challenge. In this 
paper, a double sparse regularization (DSR) model that exploits both the gradient sparsity and the 
structured sparsity is proposed to recover the image of interest from the recorded CDPs corrupted with 
Poisson noise. An image patch group matrix is formed by stacking similar image patches one by one. 
Owing to the similar structure of these image patches, the formed image patch group matrix is low rank. 
Based on this fact, a group low rank (GLR) regularization model is formulated. Combining the GLR model 
and the total variation (TV) model, we propose the so-called DSR model. The DSR model is utilized to 
formulate a phase retrieval optimization problem that consists of two terms: (i) the Poisson likelihood 
fidelity term, (ii) the proposed DSR model of utilizing TV and GLR. The accelerated gradient descent 
method that utilizes the adjustable gradient clipping technique is presented to solve the corresponding 
problem. Experimental results demonstrate that the proposed algorithm can recover the image with high 
quality from few CDPs, and can be robust to Poisson noise.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the past several decades, phase retrieval (PR), i.e., recovery 
of the object or image from the recorded magnitudes or intensities 
of its linear transform, is an old, but hot topic. The PR technique 
arises in various science and engineering fields, including optics 
[1], X-ray crystallography [2], astronomy [3], and signal process-
ing [4]. Since limited information about the image of interest is 
recorded by the charge-coupled-device (CCD) detector in optical 
systems, recovering the image of interest from the non-linear mea-
surements is a challenging task. To acquire more information about 
the image compared to the traditional PR sampling systems, a 
coded diffraction imaging system that acquires the diffraction pat-
terns of the modulated signal was designed by Candes [5]. The 
recorded diffraction pattern is called a coded diffraction pattern 
(CDP), which carries more image information compared to the 
Fourier intensity under the same scenario. Subsequently, various 
PR algorithms based on the CDP model were developed.

The first class of approaches to solve the PR problem is the PR 
technique based on a semidefinite program (SDP) method [5,6]. In 
general, this class of PR algorithms first formulates a low-rank PR 
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optimization problem via the PhaseLift technique, and then trans-
lates the resulting non-convex problem into a convex one, which 
we expect. However, the SDP-based PR algorithms that replace the 
signal vector with a higher-dimensional matrix are not suitable for 
large-scale problems.

Recently, according to the maximum posterior probablity (MAP) 
rule, a non-convex but smooth least-squares estimation problem 
was formulated. The corresponding problem is usually solved by 
gradient-based methods, examples of which include Wirtinger flow 
(WF) [7], truncated Wirtinger flow (TWF) [8], reweighted Wirtinger 
flow [9], sparse truncated Wirtinger flow [10], and median trun-
cated Wirtinger flow [11]. The provable convergence of these algo-
rithms leads them to popular ones. However, image inherent priors 
are ignored in these algorithms. As a result, they often suffer from 
bad reconstructions in the case of a few CDPs. An alternative strat-
egy is to exploit the regularization model, which imposes a certain 
desirable property on the recovered image. The most popular reg-
ularization model is the sparse regularization model. This regular-
ization model has been utilized to develop effective PR algorithms. 
Tillmann et. al. [12] exploited the sparse representation model un-
der an adaptive synthesis dictionary to construct the regularization 
term, and proposed the so-called DOLPHIn (DictiOnary Learning 
for PHase retrIeval) algorithm. Experiments for real-valued im-
ages validated that higher reconstruction quality was achieved by 
DOLPHIn, compared with the WF algorithm. Katkovnik [13] de-
rived a sparse phase amplitude reconstruction (SPAR) algorithm 
based on sparse models of magnitude and absolute phase of the 
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Fig. 1. Illustration of realistic CDP model.

complex-valued object. In the SPAR algorithm, block-matching and 
three-dimensional (3D) filtering (BM3D) frames [14] were utilized 
for sparse models. Compared to the TWF algorithm, experimental 
results indicated that the SPAR algorithm could achieve higher re-
construction quality. More recently, Chang et al. [15] exploited the 
total variation (TV) regularization model for PR, and developed an 
effective algorithm by using orthogonal dictionary learning in their 
following work [16]. Numerical experiments [12,13,15,16] demon-
strated that the regularized PR algorithms out-performed the PR 
algorithms without regularization.

Many PR algorithms for recovering the image from the recorded 
CDPs corrupted with Gaussian noise were developed. However, 
for realistic applications, the measurements are often contami-
nated by Poisson noise. How to recover the high-quality image 
from Poisson-noisy CDPs is an important issue. To improve the 
reconstruction quality, we exploit the structured sparsity and the 
gradient sparsity (sparse in gradient domain) for PR. The similar 
image patches are grouped to form a data matrix, and we call 
this formed matrix as image patch group. Each patch in the image 
patch group contains similar structures, which implies the struc-
tured sparsity. The structured sparsity has been utilized for solving 
image inverse problems. The algorithms of exploiting the struc-
tured sparsity for image restoration have been proposed, such as 
the adaptive iterative singular-value thresholding (SAIST) algorithm 
[17], the weighted nuclear norm minimization (WNNM) algorithm 
[18], and the compressed sensing via non-local low-rank regular-
ization (NLR-CS) algorithm [19]. Moreover, the BM3D image de-
noising with shape-adaptive principal component analysis (BM3D-
SAPCA) algorithm that exploits non-local similarity was proposed 
[20]. Differ from these works, we exploit the structured sparsity 
for diffraction imaging, i.e., recovering the image only from the in-
tensities of its linear transform. Based on the fact that the image 
patch group is low rank, we formulate the group low-rank (GLR) 
model to characterize the low-rank property of the image patch 
group. The TV model and the GLR model are fused to formulate a 
double sparse regularization (DSR) model. The main contributions 
of the current paper are as follows:

(1) Based on the fact that the image patch group is low rank, 
we formulate a GLR regularization model that exploits the struc-
tured sparsity. The GLR model is a general sparse model, and it 
is suitable for any image inverse problem, not just limits in phase 
retrieval.

(2) We propose a double sparse regularization model that ex-
ploits both the TV model and the GLR model. In fact, the DSR 
model characterizes not only the sparsity of the underlying im-
age in the gradient domain, but also the low-rank property of the 
image patch group.

(3) According to the Poisson data model and the MAP rule, 
we derive a regularized PR model under the Poisson case. The 
DSR model that can characterize multiple image priors is utilized 
to formulate a PR optimization problem. The accelerated gradient 
descent method that exploits the adjustable gradient clipping tech-
nique is proposed to solve the formulated non-convex problem. Ex-
perimental results show that the proposed algorithm out-performs 

the previous PR algorithms in terms of the reconstruction quality 
for the case of a few CDPs. Most importantly, the proposed algo-
rithm is robust to Poisson noise.

The structure of this paper is as follows. In Section 2, we re-
view previous PR models and algorithms. Then, in Section 3, we 
introduce the GLR model. In Section 4, we firstly formulate the PR 
problem of exploiting the DSR model, and then describe the pro-
posed numerical method for solving the corresponding optimiza-
tion problem in detail. We present our experimental simulations 
in Section 5. Finally, concluding remarks and directions for future 
research are presented in Section 6.

2. Phase retrieval models and algorithms

In various optical applications, the measurements acquired by 
detectors are often affected by noise; therefore, it is important to 
study robust PR algorithms. The CDP model has gained popular-
ity in the PR field in recent years. Fig. 1 presents an illustration of 
the realistic setup of the CDP model. In the figure, i and j repre-
sent the index values of the horizontal direction and the vertical 
direction in the object plane, respectively. u and v represent the 
index values in the sensor plane. A light or X ray illuminates the 
object (signal or image) of interest, and a random mask is placed 
behind the object to modulate the signal. The measurement de-
vice records the diffraction pattern of the modulated signal, and 
the recorded diffraction pattern is called the CDP. Mathematically, 
given a real image x ∈ R

N , the CDP model under the noise case 
can be described as

y ≈ |�x|2, (1)

where | · | is the magnitude operator, and y ∈ R
M represents the 

CDP acquired by the detector. In model (1), �x is defined as fol-
lows:

�x = [FI1 � x, ...,FIL � x]T, (2)

where [I1, ..., IL] represents the illumination mask, L is the num-
ber of the illumination masks, and F represents a Fourier-transform 
matrix. � denotes the element-wise product. Recovering the image 
x from the CDP y is the goal of PR algorithms. Recently, Candes [7]
proposed the WF algorithm, and constructed the following non-
convex optimization model

min
x

||y − |�x|2||22. (3)

The above problem is solved by a gradient descent scheme in 
the WF method. The WF method often starts with an elaborate 
initialization that is obtained by means of the spectral method. 
Experimental results showed that the WF method could recover 
the image perfectly from sufficient noiseless measurements. On the 
theoretical side, the WF algorithm was shown to allow the exact 
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