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a b s t r a c t

The problem of controlling a nonlinear system to an invariant manifold using quantized state feedback
is considered by the example of controlling the pendulum’s energy. A feedback control law based on
the speed gradient algorithm is chosen. The main result consisting in precisely characterizing allowed
quantization error bounds and resulting energy deviation bounds is presented.
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1. Introduction

Control theory has initially been developed under idealistic
assumptions regarding information transmission in a feedback
loop. More recently, however, researchers have been increasingly
interested in the question of how much information is really
needed to perform a desired control task, or conversely, what
control objectives can be achieved with a given amount of
information. Such considerations arise from applications where
scarce communication resources, sensor limitations, or security
concerns play a role, and are also motivated by theoretical interest
in understanding the interplay between information and control.

Among the various phenomena responsible for a limited
amount of information available in a feedback loop, quantization
is one of the most basic and widely investigated. By a quantizer
we mean a function that maps a continuous real-valued system
signal into a piecewise constant one taking a finite set of values,
thereby encoding this signal using a finite alphabet. Notable early
studies of the effect of quantization on the behavior of control
systems include (Curry, 1970; Delchamps, 1990; Kalman, 1956;
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Miller, Mousa, & Michel, 1988), and a brief overview of the recent
literature can be found in Sharon and Liberzon (2012).

One approach to analysis of quantized control systems, taken
in Liberzon (2003) and elsewhere, involves modeling quantiza-
tion effects as additive errors. If the controller possesses suitable
robustness with respect to such errors, then the system perfor-
mance can be shown to degrade gracefully due to quantization. In
the context of stabilizing an equilibrium, instead of global asymp-
totic stabilization one typically obtains two nested invariant re-
gions such that all trajectories starting in the larger one converge
to the smaller one, a fact usually established by Lyapunov argu-
ments. While robustness to additive errors is automatic for lin-
ear systems and linear feedback controllers, for general nonlinear
systems the robustness requirements can be quite restrictive and
finding a controller meeting such requirements can be challenging
(Liberzon, 2003).

Pendulum dynamics is a popular and important benchmark
system in control theory. The problem of stabilizing the upright
equilibrium, as well as the problem of controlling the pendulum’s
energy to a desired level, have been widely studied and call for
innovative solutions. In particular, it is known (see, e.g., Shiriaev,
Egeland, Ludvigsen, & Fradkov, 2001) that the upright equilib-
rium cannot be globally asymptotically stabilized by continuous
feedback. See Angeli (2001), Åström and Furuta (2000), Rantzer
and Ceragioli (2001), Shiriaev et al. (2001), Teel (1996) and the
references therein for some interesting contributions to pendulum
control. More generally, the problem of energy control for Hamil-
tonian systems was first considered in Fradkov (1996). In Shiriaev
and Fradkov (2000, 2001) extended conditions for control of in-
variant sets were proposed with application to energy control of
the pendulum.
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In this paper we consider the problem of controlling the
pendulum’s energy to a desired level using quantized state
feedback. As the nominal feedback law, we choose one based on
the speed gradient method from Fradkov (1980) (which stabilizes
any energy level without quantization). As a candidate Lyapunov
function, we choose the squared difference between the current
and the desired energy levels (which decreases for the closed-
loop system without quantization). We show that in the presence
of sufficiently small state quantization errors, even though the
Lyapunov function may not always decrease, the time periods on
which itmay increase and the amount bywhich itmay increase are
suitably bounded and decreasing behavior still dominates. Using
these properties, we are able to establish that if the initial energy
level is not too far from the desired one, then it will remain not too
far from it and will eventually become close to it. While this result
may appear intuitively not surprising, our main contribution lies
in precisely characterizing allowed quantization error bounds and
resulting energy deviation bounds.

The rest of the paper is structured as follows. In Section 2 the
general problem of the pendulum’s energy control using quantized
state feedback is described. Our main result is presented in Sec-
tion 3. Section 4 is devoted to a numerical example demonstrating
the performance predicted by the main theorem.

2. Problem formulation

Consider the pendulum equations

ϕ̈(t) = −
g
l
sinϕ(t) +

1
ml2

u(t), (1)

where ϕ is a deviation angle (ϕ = 0 at the lower position), u is a
controlling torque, g is a gravity acceleration,m and l are the mass
and the length of the pendulum respectively.

Assume that H(ϕ, ϕ̇) is the full energy of the pendulum, i.e.

H(ϕ, ϕ̇) =
1
2
ml2ϕ̇2

+ mgl(1 − cosϕ).

Consider the problem of energy level stabilization of system (1).
Let z = [ϕ, ϕ̇]

T , z ∈ R2. Let h (h < 2mgl) be a positive number.
Consider a set

Xh = {z : 0 < H(z) 6 h} .

Let H∗ (0 < H∗ < h) be desired energy level and the goal function
be as follows

V (z) =
1
2

(H(z) − H∗)
2 . (2)

It is required to design a feedback law

u = U(z),

providing the achievement of the control goal

lim
t→∞

V (z(t, z0)) = 0, (3)

where the initial energy level H(z0) satisfies the following
assumption:

z0 ∈ Xh, (4)

i.e. z0 belongs to energy layer between 0 and h.
The algorithmdesign is basedon the speed gradientmethod (Frad-

kov, 1980, 2007; Fradkov & Andrievsky, 2011). According to the
speed gradient method it is required to calculate the function
ω(z, u) = V̇ (z), i.e.ω(z, u) is the speed of variation of the quantity
V along the trajectories of system (1)

ω(z, u) = (H(z) − H∗) BT z u,

Fig. 1. Quantizer regions.

where B = [0, 1]T . Let us find u-derivative of ω(z, u) and write
down the control algorithm in the finite form

u = U(z) = −γ
∂ω

∂u
= −γ (H(z) − H∗) BT z, (5)

where γ > 0.
The idea of algorithm (5) can be explained as follows (Fradkov,

2005). To achieve control goal (3), it is advisable to vary u such that
V decreases. But because V does not depend on u, it is difficult to
find the direction of such decrease. Instead, one can decrease V̇ by
ensuring that V̇ < 0, which is the condition that V decreases. The
function V̇ (z) = ω(z, u) explicitly depends on u, which makes it
possible to design algorithm (5).

The following theorem, characterizing the performance of
control algorithm (5), can be directly concluded from Theorem 3.1
and Remark 3.1 in Fradkov (2007).

Theorem 1. If the initial energy layer between the levels H(z0) and
H∗ does not contain an equilibrium of the unforced system, then the
goal level H∗ will be achieved in the controlled system (1), (5) for any
γ > 0 from all initial conditions.

The fulfillment of the condition in Theorem 1 follows from (4).
Let the set Z = {zi : zi ∈ Xh, i ∈ N}


zsat be a finite subset of

Xh


zsat , where zsat ∈ R2. Consider quantizer q(z) : R2
→ Z pro-

posed in Liberzon (2003). Assume that Zi =

z ∈ R2

: q(z) = zi


are quantizer regions (Fig. 1), such that


Zi = Xh. Hence, q(z) = zi
for all z ∈ Zi, i ∈ N. When z does not belong to the union of quan-
tization regions, the quantizer saturates, i.e. q(z) = zsat if z ∉ Xh.

Suppose that only quantized measurements q(z) of the state z
are available. Then the state feedback law (5) is non-implement-
able. Hence, instead of continuous control (5) consider quantized
feedback control law (5):

u = U(q(z)) = −γ (H(q(z)) − H∗) BTq(z), (6)

and control goal

lim sup
t→∞

|H(z(t)) − H∗| < ~1, (7)

where ~1 is some positive number.
Therefore, the problem is to find conditions of achievement of

the goal (7) with quantized state feedback control (6). Note that
assumption (4) is essential in the case of control algorithm (5) but
can be omitted with using modifications of (5). In Shiriaev et al.
(2001) it is shown that the global attractivity of the upright equi-
librium can be achieved by amodification of the speed gradient en-
ergymethod based on the idea of variable structure systems (VSS).
However, an application of such a modified algorithm to the case
of quantized measurements does not seem straightforward and is
not pursued here.
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