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In the present world, distributed signal processing plays a significant role in applications ranging from 
surveillance and tracking to exploration and monitoring. In this paper, an online distributed framework 
of spatio-temporal Wiener model is presented. A conventional Wiener model is extended to nonlinear 
distributed parameter systems (DPSs), which comprises of a linear time-invariant (LTI) system in series 
with a static nonlinear element. The standard Wiener model identification framework is reformulated as 
the minimization of multiple constrained optimization subtasks that get solved using alternating direction 
method of multipliers (ADMM) along with coordinate descent techniques. DPSs are significantly used 
in industrial processes e.g. thermal process, fluid process, etc. Almost all the real-time data contain 
non-linearity in them which is modeled using several methods: Wiener modeling is one of them. 
Adaptive as well as distributed implementation of such model is considered to take the advantages 
of both adaptive and distributed signal processing. The proposed method overcomes the limitations 
concerning fusion center (FC) and least-square (LS) based approaches. Unknown parameters of Wiener 
DPS are identified in an adaptive and distributed manner. To dignify the effectiveness of the proposed 
methodology, simulations on a catalytic rod (an example of a parabolic system) are illustrated.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A recent in-vogue application of distributed signal processing is 
the decentralized estimation of unknown parameters of a system 
using the observations collected across a wireless sensor network 
(WSN). Distributed signal processing is involved in most of the im-
portant industrial applications ranging from surveillance and track-
ing to exploration and monitoring [1]. It deals with extracting the 
information from data gathered at different nodes. These nodes are 
spread over a wide geographical area under monitoring. The data 
collected by these sensor nodes are noisy, and the processing is 
done on these noisy data to extract required parameters. These 
nodes exploit the spatial and temporal diversity to improve the 
robustness of the processing tasks [2,3]. Fusion center (FC) based 
estimation (centralized approach) can also do the job [4] but has 
some limitations arises due to; i) the need of enormous amount 
of communication resources for transmitting each node informa-
tion to FC that limit the self-sufficiency of the network [5] and 
ii) lack of robustness (as there is a point of failure of the whole 
system if fusion center gets corrupted). In addition, the FC-based 
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approach is lacking the ability to respond in a real-time varying 
scenario which deteriorates the tracking performance [2,6]. To get 
rid of these detriments, an advanced way of online in-network dis-
tributed approach [7] is encountered to estimate the parameters of 
interest. An online in-network implementation allows to process 
on-the-fly information collected at each instant of time. The online 
implementation has been proved to recover the desired parame-
ters of interest under ideal inter-sensor links [8]. The objective of 
the distributed estimation is to find out an estimate that is as close 
as possible to the one that would be obtained if every node had 
the information of the entire network.

The goal of this research is to develop, analyze and numeri-
cally test a methodology to estimate the unknown parameters of 
Wiener model in a decentralized manner. Previously, the LS-based 
approach has been employed to estimate the parameters of Wiener 
modeling [9], but this approach is an offline process where all the 
data need to be gathered at one place. However, this technique is 
prone to environmental changes as variables change with time.

Wiener modeling approach has been developed for lumped pa-
rameter systems (LPSs) and nonlinear DPSs [9]. To achieve the 
objective for modeling industrial processes in a distributed man-
ner, the proposed article deals with the nonlinear DPS. Some of the 
widely used industrial examples of DPSs are thermal process, fluid 
process, etc. [9]. These industrial processes are basically described 
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through partial differential equations (PDEs) [10–12] and possess 
complex coupling in space and time. Aforementioned processes are 
of infinite dimension and contain nonlinear dynamics. The spatio-
temporal coupling, nonlinear dynamics and infinite dimensionality 
make the processes very difficult to analyze, model and control. 
Modeling is essential for any DPS to predict, analyze and control. 
Due to infinite-dimensionality, direct modeling of any PDE cannot 
be used for implementation. In fact, the dimensionality reduction 
based models are often required to approximate the systems with 
finite dimensions. Many approaches have been reviewed for model 
reduction and control problems when the PDEs of the systems are 
known or unknown [9,13–15]. Due to incomplete process knowl-
edge, the PDEs of DPS are unknown. Hence, there are uncertainties 
like unknown parameters and undefined non-linearity. In order to 
overcome these uncertainties, data-based modeling is required, i.e. 
model has to be obtained considering input and output measured 
data [13,16–18]. In this article, an online distributed estimation 
of unknown uncertainties is presented using the spatio-temporal 
data collected at different sensor nodes. The underway distributed 
modeling methodology in this study can be termed as ‘distributed 
Wiener modeling’ as the Wiener model parameters are identified in 
a distributed manner. Wiener model is chosen because of its ability 
to approximate a wide range of nonlinear time-invariant systems 
with arbitrary accuracy and simple block-oriented structure [19]. 
Also, Wiener model is extensively engaged in several engineering 
practices. A Wiener model constitutes of a linear time-invariant 
DPS followed by a static nonlinear element. The optimization task 
and control composition of the Wiener model is comparatively eas-
ier than the traditional nonlinear model (as the linear model is 
easily derivable from the block-oriented nonlinear model) [9,20].

The data acquired across WSN are usually restrained to a low 
dimensional subspace. Hence, a few principal components of co-
variance data represent the dimension of the data acquired [21]. 
The low dimensional signal subspace has been estimated in a 
distributed manner using distributed principal component analy-
sis (D-PCA) or distributed Karhunen–Loeve (K–L) decomposition 
or subspace tracking [8,22–24]. The elemental idea behind K–L 
decomposition is to find out modes that are responsible for de-
termining the dominant characteristics of the system. Some other 
techniques for model or dimension reduction are Green’s function 
method, finite difference method (FDM), Galerkin method, eigen-
function method, finite element method (FEM) etc. However, K–L 
method is more suitable for dimension reduction as it is more ac-
curate than all other methods [25]. The proposed work utilizes 
the approach involved in [8] and [22] to frame the cost func-
tion as constrained separable optimization tasks. Then, the un-
known parameters are estimated in a distributed recursive manner. 
ADMM is employed along with coordinate descent method to han-
dle the separable constrained optimization problem and then the 
unknown parameters of interest are estimated [8,22,26,27].

The rest of the proposed article is arranged in the following se-
quence. Problem formulation and preface are well thought out in 
Section 2. Distributed Wiener modeling based on consensus strat-
egy is elaborated in Section 3. Section 4 of this article describes 
the convergence analysis of the proposed online distributed model-
ing methodology. Numerical test as an application of the deduced 
technique is described under Section 5. Finally, the conclusion of 
the proposed research work is drawn in Section 6.

The notations used here are as follows: Any alphanumeric hav-
ing bar at its head is termed as vector quantity, e.g. (·̄). Any al-
phanumeric with bold case is noted as matrix, e.g. (bold case). Any 
alphanumeric with no bar and no bold-case is referred as a scalar 
quantity. (·)T denotes the transposition, ‖·‖2 denotes the Frobenius 
norm and vec(·) denotes the stacking of all columns of a matrix 
into a column vector. Some of the frequently used variables in this 

Table 1
Frequently used variables.

y(x j , t) Measured data at location x j at time instant t
Ȳx,t Stacked sensor measurements at any time instant t
ϕ(x) Matrix of orthonormal spatial basis functions
�x Covariance matrix of the measured data
γ̄ (t) Temporal coefficients of the spatio-temporal output
ˆ̄γ (t) Estimate of γ̄ (t)
γ̄t, j Auxiliary variable for γ̄ (t) at any node j
N j Neighbors of sensing unit j
j′ Neighboring sensing unit of sensor node j

Fig. 1. Wiener distributed parameter system [9].

article are listed in Table 1. Other notations are defined wherever 
they are used.

2. Problem formulation and preface

A Wiener distributed parameter system consists of a linear 
time-invariant (LTI) system in series with a static nonlinear ele-
ment. A Wiener DPS can be presented as in Fig. 1.

Ḡ(x, q) (1 × m) represents LTI system transfer function, N(·) :
R → R is the nonlinear static element representation, t and x are 
the temporal variable and spatial variable respectively. q represents 
the forward shift operator. Referring to Fig. 1, intermediate variable 
d(x, t) and input/output relationship of the system is expressed as

d(x, t) = Ḡ(x,q)ū(t) + v(x, t), (1)

y(x, t) = N
(
Ḡ(x,q)ū(t) + v(x, t)

)
, (2)

where ū(t) ∈ R
m is the temporal input, y(x, t) ∈ R represents the 

spatio-temporal measured output at the sensor nodes or the out-
put of the Wiener DPS and v(x, t) ∈ R refers to the process noise 
of the system. The transfer function Ḡ(x,q) representing LTI system 
of Wiener DPS can be explicitly written in the form of decompos-
able infinite orthogonal spatial basis functions 

{
ϕ i(x)

}∞
i=1 as

Ḡ(x,q) =
∞∑

i=1

ϕ i(x)Ḡ i(q), (3)

where Ḡ i(q) (1 × m) is denoting the traditional transfer function. 
From (3), Wiener DPS can be observed as the synthesizer of tem-
poral and spatial variables.

With the concept of time-space separation framed in Fig. 2, 
Wiener DPS in Fig. 1 can be represented as Fig. 3. Since the func-
tion F (·) can be different from the function N(·), the considered 
assumption is very much suitable for a broad range of nonlinear 
systems [9]. DPS are widely represented through PDEs and are 
known to be of infinite dimension. In order to perfectly model 
and control any nonlinear infinite dimension system, an infinite 
number of sensors and actuators are required. This situation is not 
practically possible due to hardware and cost limitations. So, a lim-
ited number of sensors and actuators should be used in a trade-off 
with complexity and accuracy to analyze the system model.

Distributed Wiener modeling broadly includes three stages as 
depicted in Fig. 4. Firstly, a framework is designed to estimate 
the principal components of the data covariance matrix, which are 
used to reduce the dimension of the observed data. In the sec-
ond stage of distributed modeling methodology, the parameters of 
the Wiener model are identified in a distributed manner. The third 
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