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An improved proportionate adaptive filter based on the maximum correntropy criterion (IP-MCC) is 
proposed for identifying the system with variable sparsity in an impulsive noise environment. Utilization 
of MCC mitigates the effect of impulse noise while the improved proportionate concepts exploit the 
underlying system sparsity to improve the convergence rate. The performance analysis of the proposed 
IP-MCC reveals that the steady-state excess mean square error (EMSE) of the proposed IP-MCC filter is 
similar to the MCC filter. Extensive simulations demonstrate that the proposed IP-MCC outperforms the 
state-of-the-art in terms of convergence rate, and the detailed complexity analysis reveals that IP-MCC 
requires much less computational effort.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The popular least mean square (LMS) family of algorithms that 
developed under minimum mean square error (MMSE) criterion 
(i.e., minimizing the �2-norm of the error) are effective in Gaus-
sian noise environment. However, they perform poorly for the 
non-Gaussian impulsive interference such as low frequency atmo-
spheric noise, many types of man-made noise and underwater 
acoustic noise [1]. Impulsive interference is generally characterized 
by a heavy-tail distribution, and research shows that a lower-order 
statistical measure of the error in cost function offers more robust-
ness against impulsive noise [2]. The sign algorithm [3] which was 
later extended to the normalized sign algorithm (NSA) [4], both 
employ the mean absolute value of the error (i.e., �1-norm of the 
error) as the cost function, exhibit robustness against the impulsive 
interference. To attain the improved convergence rate in colored 
input conditions, the affine projection sign algorithm (APSA) [2] is 
proposed by minimizing �1-norm of the a posteriori error vector.

For applications like network echo cancellation (NEC), the sys-
tem (network echo path) to be estimated is sparse in nature 
[5]. Since the APSA is sparsity agnostic, it is not a best choice 
for sparse system identification. Inspired from the proportionate 
adaptation [6], two proportionate affine projection sign algorithms, 
namely real-coefficient proportionate APSA (RP-APSA) [7] and real-
coefficient improved proportionate APSA (RIP-APSA) [7] are pro-
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posed by employing the proportionate concepts [6] and improved 
proportionate concept [8] to the APSA. Both the RP-APSA and RIP-
APSA yield faster convergence rate and lower misadjustment over 
APSA at the cost of increased complexity. To reduce the com-
putational complexity, the RIP-APSA was further modified to the 
memory improved proportionate APSA (MIP-APSA) [9]. Recently, by 
employing the Lorentzian norm, a Lorentzian based adaptive filter 
(LAF) is proposed in [10], which was later extended to the normal-
ized Lorentzian based hard thresholding adaptive filter (normalized 
LHTAF) and normalized Lorentzian based variable hard threshold-
ing adaptive filter (normalized LVHTAF) by incorporating the itera-
tive hard thresholding concepts [11] into the normalized LAF. Since 
both the normalized LVHTAF and LHTAF use the hard thresholding 
operator H K (that sets all coefficients of weight vector to zero, ex-
cept K largest (in magnitude) coefficients), their performance is 
hugely dependent on the assumed sparsity value K . In general, the 
sparsity of the network echo path may vary with time and context 
and hence these algorithms suffer while tracking these variations. 
Moreover, as we will show subsequently, these algorithms involve 
huge computational complexity, hence not suitable for real-time 
applications.

On the other hand, a new robust optimal criterion, namely the 
maximum correntropy criterion (MCC) has been successfully ap-
plied in adaptive filtering [12–17]. As the correntropy is resilient 
to the outliers for appropriate kernel width, MCC cost became a 
good choice in impulsive interference environment. In recent past, 
the MCC cost has been widely used to develop a series of ro-
bust adaptive filters in various non-sparse applications. MCC based 
quantized kernel adaptive filters have been developed in [18]. In 
[19,20], MCC based schemes are applied for direction of arrival 
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(DOA) estimation in impulsive noise environments. A distributed 
implementation of MCC algorithm is presented in [21] to improve 
the performance of the estimation over network in impulsive noise 
environments. To extend the MCC methodology to the sparse sys-
tem identification, in [22], proportionate MCC (PMCC) algorithm is 
proposed. However, the performance of PMCC algorithm degrades 
with the time-varying system sparsity. Moreover, after initial phase 
of rapid convergence, the convergence rate of PMCC slows down 
dramatically due to the stalling of inactive coefficients.

To address the aforesaid issues of Lorentzian based algorithms 
(i.e., robustness against the time-varying system sparsity and com-
putational complexity) and PMCC (i.e., robustness against the time-
varying system sparsity and stalling of inactive coefficients), in 
this paper, we propose an improved proportionate MCC (IP-MCC) 
algorithm by combining the MCC based adaptive filter with the 
improved proportionate concept [8]. Usage of MCC makes the algo-
rithm robust against the impulsive interference and the improved 
proportionate adaptation ensures high convergence rate and ro-
bustness against the time varying system sparsity. Our key con-
tributions include:

1. We designed a novel IP-MCC algorithm with modified gain fac-
tors which ensures the stability of the algorithm.

2. Without any white assumption on input, we carried out the 
performance analysis of the proposed IP-MCC and the analysis 
shows that the steady-state excess mean square error (EMSE) 
of the proposed IP-MCC is same as that of MCC.

3. Through extensive simulations, we demonstrate the superi-
ority of the proposed IP-MCC in terms of convergence rate, 
steady-state mean square deviation (MSD) and tracking capa-
bility over the state-of-the-art.

4. We carried out a detailed complexity analysis of the IP-MCC 
and compared it with the existing algorithms to show that this 
improvement in performance is achieved at much less compu-
tational complexity.

2. Algorithm design

We consider here the problem of identifying a system that 
takes an input signal u(n) and produces the observable output 
d(n) = uT (n)wopt + ϑ(n), where u(n) = [u(n), u(n − 1), · · · , u(n −
L + 1)]T is the input data vector at time index n, wopt is the L × 1
system impulse response vector (to be identified) which is known 
a priori to be sparse with variable sparsity and ϑ(n) constitutes the 
observation noise plus impulsive interference with mean zero and 
variance σ 2

ϑ which is taken to be i.i.d. and independent of input 
u(m) for all n, m.

The MCC based stochastic gradient adaptive filter in [13] is de-

rived by maximizing the cost function E
[

exp
( − e2(n)

2 σ 2

)]
and the 

corresponding update equation is given by

w(n + 1) = w(n) + μexp
( − e2(n)

2σ 2

)
e(n)u(n), (1)

where μ is the adaptation step size, e(n) = d(n) − wT (n)u(n) is 
the estimation error and σ is the kernel width. For a constant step 
size μ in (1), the MCC filter with a small kernel width leads to 
a low steady-state misalignment but a slow convergence rate, and 
with a large kernel width it provides a fast convergence rate but 
a high steady-state misalignment [23]. Also note that the MCC al-
gorithm is equivalent to LMS algorithm with a variable step size 
μ(n) = μ exp

( − e2(n)

2σ 2

)
, with 0 ≤ μ(n) ≤ μ [23]. It can be seen 

that when impulsive noise occurs e(n) value becomes large, then 
exp

(− e2(n)

2σ 2

) → 0, thereby stopping the adaptation process. On the 

other hand, when e(n) value is small, exp
( − e2(n)

2σ 2

) → 1, implying 
MCC algorithm reduces to the LMS algorithm.

Like conventional LMS and normalized LMS (NLMS) adaptive fil-
ters, MCC algorithm is also sparse agnostic and hence it can not 
exploit the underlying system sparsity. To achieve this, the propor-
tionate adaptation concepts [6] can be extended to MCC algorithm 
by pre-multiplying the update vector with the proportionate gain 
matrix G(n). Among the proportionate adaptation algorithms, pro-
portionate normalized LMS (PNLMS) [6] is the most popular one. 
However, in [24], proportionate LMS (PLMS) is proposed by omit-
ting the normalization term (i.e., uT (n)G(n)u(n)) which is present 
in PNLMS algorithm. This saves significant computational cost and 
it is proved that the penalty for this omission is negligible. Mo-
tivated from this, MCC filter coefficients can also be proportion-
ately adapted without the normalization. The resultant algorithm 
is termed as the proportionate MCC (PMCC) and its weight update 
is given as follows:

w(n + 1) = w(n) + μexp
( − e2(n)

2σ 2

)
e(n)G(n)u(n), (2)

where G(n) = diag{g0(n), g1(n), · · · , gL−1(n)}, distributes the adap-
tion energy among the filter taps in proportion to the individual 
filter tap magnitude i.e., gi(n) ∝ |wi(n)| [6]. Note that similar algo-
rithm is reported in [22] which is developed in the unified analysis 
context. However, PMCC performance degrades when the sparsity 
of the system varies over time. For example, in echo cancellation 
application the sparsity of the echo path changes with time. For 
effective identification of these time varying sparse systems, im-
proved proportionate concept [8] is preferred. These improved pro-
portionate concept intrinsically combines the conventional adapta-
tion with proportionate adaptation through a mixing parameter α
and the corresponding gain factors are given by [8],

gi(n) = 1 − α

2 L
+ (1 + α)

|wi(n)|
2‖w(n)‖1 + εp

, (3)

where −1 ≤ α ≤ 1 and εp is a small positive constant, employed 
to avoid division by zero. By ensuring minimum adaptation energy 
to all the taps, the improved proportionate concept addresses the 
slow convergence issue of PMCC and also makes it robust against 
the time varying system sparsity. In this work, we combine the 
improved proportionate concept with MCC and the resultant algo-
rithm is termed as improved proportionate MCC (IP-MCC).

Since the normalization term is omitted in (2), the gain factors 
in (3) can not be incorporated directly into the proposed IP-MCC 
algorithm. The gain factors in their original form render the selec-
tion of step size challenging and also they can make the algorithm 
unstable intermittently, especially for correlated input. This issue 
is not discussed in both [24] and [22]. To address this issue, we 
reformulate the gain factors to the following:

gi(n) = 1 − α

2
+ (1 + α)

L |wi(n)|
2‖w(n)‖1 + εp

. (4)

From (4), we observe that the proposed IP-MCC reduces to MCC 
for α = −1, whereas for α = 1, it behaves as PMCC [22]. With this 
reformulation, the bounds on μ of the proposed IP-MCC will be 
similar to MCC which will be proved subsequently in Section 3. 
The proposed IP-MCC is summarized in Algorithm 1.

3. Performance analysis

The proposed IP-MCC can be seen as the transform domain 
MCC with transform matrix G

1
2 (n), transformed input s(n) =

G
1
2 (n) u(n) and transformed filter coefficient vector wt(n) =

G
−1
2 (n) w(n), as suggested in [25] in the context of PNLMS anal-

ysis. The elements of transform matrix are given by [G 1
2 (n)]i,i =
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