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This paper addresses the problem of noise reduction in non-stationary signals. The paper first describes a 
human physiology based time–frequency (TF) representation (TFHP) using Mel filterbanks. It is then used 
to improve a noise reduction algorithm that does not require any a priori information about the signal 
of interest and the noise. This algorithm is efficiently implemented using an original wavelet shrinkage 
method. The overall method results in an original TF denoising procedure that yields a denoised TFHP 
(DTFHP). From this representation one can reconstruct a denoised time-domain signal and therefore 
define a new improved noise reduction algorithm, whose performance is evaluated and compared 
with other state-of-the-art methods. The performance assessment uses several criteria: (1) signal-to-
noise-ratio (SNR), (2) segmental SNR (SSNR) and (3) mean square error (MSE). The results indicate an 
improvement of up to 4.72 dB with respect to SNR, 2.79 dB w.r.t. SSNR and 4.72 dB w.r.t. MSE for a 
speech database signals corrupted with four different noises. In addition, other applications such as EEG 
signal enhancement show promising results.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Most real signals are non-stationary, however traditional time-
domain or frequency-domain representations are inadequate to an-
alyze such signals because they assume the signal as stationary 
[1]. Instead, one can use joint time–frequency (t, f ) representa-
tions as they were found to be better to process such signals. Two 
family of time–frequency (TF) methods have been widely used in 
the state-of-the-art: (1) linear TF and (2) quadratic TF representa-
tions [1–3]. Linear methods such as short-time Fourier transform 
(STFT) are the most used in practice because they are cross-terms 
free (when components are spaced enough in the TF domain [1, 
Section 4.1]) and computationally efficient [4]. The main drawback 
of these types of representations are their poor resolution perfor-
mance. Quadratic methods have shown improved resolution per-
formance but generally they required the setting of several param-
eters to obtain a good trade-off between resolution performance 
and cross-terms suppression [1]. Therefore, it could be difficult for 
a non-expert to get the best TF representation; in addition optimal 
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parameters are generally signal dependent, therefore such methods 
are not suitable for an automatic classification system (e.g. auto-
matic speech recognition). To overcome the last limitation, signal 
dependent kernel methods have been developed with automatic 
parameters selection [5,6], however these methods are not compu-
tationally efficient for long duration signals (e.g. speech signals).

Another difficulty for the processing of real signals is that they 
are generally corrupted by noise. In many applications, such as 
geophysics [7,8], EEG abnormalities detection [9] or speech recog-
nition [4,10], efficient signal enhancement techniques are required 
[11]. In the open literature, there are several methods available 
to suppress noise that depend on the knowledge of characteris-
tics of the useful signal and/or the noise. Some algorithms require 
a priori knowledge about the signal and noise second order statis-
tics [12], while others only require knowledge of the noise spectral 
density (e.g. Wiener filtering) [13]. Unfortunately, in real applica-
tions such information is not available and must be estimated [14]. 
Other studies made the assumption of the noise being Gaussian or 
sub-Gaussian in order to use wavelet based denoising approaches 
[15,16]. This is a rough assumption, as in real-life there are var-
ious noise sources [17]. Furthermore, in mobile communications, 
the signal of interest is speech and it often arises from conver-
sations that take place in noisy and nonstationary environments 
such as inside a car, in the street, or inside airports. In such case, 
there is no justification to assume Gaussian noise. Therefore, noise 
reduction methods based on this ideal assumption may likely fail 
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in real life applications [18]. Many authors proposed modeling the 
noise, but these techniques are application dependent and cannot 
be used in different situations [19–21].

This paper describes an improved denoised TF representation 
and blind noise reduction method that performs well without prior 
information about the signal and noise. The proposed TF represen-
tation is based on a psycho-acoustic TF model and it deals effec-
tively with the non-stationarity of signals and noise. It is based 
on the finding that the basilar membrane inside the cochlea can 
be conceived as a bank of band-pass filters that have logarithmi-
cally increasing bandwidth [22]. In this study, a Mel filterbank is 
used to construct the resulting TF representation as it has shown 
promising results in modeling the human cochlea [22]. Some of the 
material presented in this paper is an extension and refinement of 
the findings in [23,24]; the main contribution of this study is to 
design an improved algorithm for noise variance estimation with 
performance supported by extensive experimental comparisons.

This paper is organized as follows; Section 2 reviews the main 
principles of the TF representation based on Mel filters called HPTF. 
Section 3 describes a method to reduce noise in the HPTF. After 
that, Section 4 discusses reconstructing the signal of interest from 
the denoised HPTF (DHPTF). Section 5 presents experiments and 
discusses the results. Finally, section 6 concludes the study and 
summarizes the main findings.

2. HPTF representation

2.1. Principle

Previous studies observed that the human ear acts like filters, 
which are concentrated only on certain frequencies [25]. Mel fil-
terbank is a psychoacoustic model which represents how humans 
perceives the sound [22]. With respect to bandwidth, these Mel 
filters are non-uniformly spaced on the frequency axis, with more 
filters in the low frequency regions and less in high frequency re-
gions. With respect to shape, the magnitude of Mel filters transfer 
functions Hm( f ) are triangular shaped filters with respect to the 
Mel scale. This scale is given by the following formula for a given 
frequency f in Hz [22]:

mel ( f ) = 2595 log10

(
1 + f

700

)
. (1)

Thus, the Mel frequency scale is almost linear below 1000 Hz 
and logarithmic above. If we consider M Mel filters, Hm( f ), each 
of them is centered on a frequency fm , for m = 2, 3, . . . , M −1, and 
has a bandwidth B(m) defined as follows:

B(m) = fm+1 − fm−1, ∀m = 2,3, . . . , M − 1. (2)

The center frequency fm is calculated from its corresponding cen-
ter frequency on the Mel scale using the following inverse formula 
obtained from Eq. (1):

fm = 700
(

10
mel ( fm)

2595 − 1
)

, (3)

where:

mel ( fm) = m

M + 1
(mel ( fmax) − mel ( fmin)) , ∀m = 1,2, . . . , M,

(4)

where fmax and fmin correspond respectively to the highest and 
the lowest frequencies of the input signal (generally fmin = 0 and 
fmax = Fs

2 , where Fs is the sampling frequency). The impulse re-
sponse hm(t) that corresponds the Mel filter Hm( f ) can then be 
expressed as:

Fig. 1. Representation of the magnitude transfer functions of Mel filterbank Hm( f )
∀m = 1 . . .10 with M = 10.

hm(t) =
∞∫

−∞
Hm( f ) e j2π f t df (5)

= 1

2π2t2

(
cos (2πt fm−1) − cos (2πt fm)

fm−1 − fm

+ cos (2πt fm+1) − cos (2πt fm)

fm − fm+1

)
.

Fig. 1 shows an example of Mel filter bank amplitude transfer 
functions for M = 10, fmin = 0 Hz and fmax = 11025 Hz, while 
Fig. 2 presents the impulse responses corresponding to h2(t) and 
h8(t) respectively.

2.2. HPTF construction

Let z ∈ R
N be a vector of N samples containing data, obtained 

from an analog signal recorded by sensors and sampled at fre-
quency Fs . This observation is a superposition of signal of interest 
s ∈ R

N and noise ε ∈ R
N :

z = s + ε. (6)

The mth row of the HPTF shown in Fig. 3, denoted by zm , is the 
convolution between observation z and the sampled impulse re-
sponse hm , ∀{m = 1 . . . M} such that:

zm = z ∗ hm. (7)

By using the linear property of the convolution, zm equals the 
sum of the filtered signal of interest and the filtered noise, such 
that:

zm = s ∗ hm + ε ∗ hm = sm + εm. (8)

Eq. (7) and Eq. (8) correspond to a filtering process in the 
Hm( f ) bandwidth, where Hm( f ) is the Mel filter centered on the 
fm frequency, according to Mel’s scale (see Fig. 1). Therefore, zm

contains the spectral information of the input signal z around 
the frequency fm , here expressed, for convenience, in the time-
domain.

One can notice that the number of samples used to describe the 
impulse response hm depends on the frequency fm . Fig. 1 shows 
that Hm( f ) bandwidth is small for low frequencies, and conversely. 
As a consequence, the impulse response time support is smaller 
for high frequencies than for low frequencies; this is in accordance 
with the Heisenberg uncertainty principle [1, Chapter 2]. Hence, to 
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