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a b s t r a c t

Contraction theory is a powerful tool for proving asymptotic properties of nonlinear dynamical systems
including convergence to an attractor and entrainment to a periodic excitation. We consider three
generalizations of contraction with respect to a norm that allow contraction to take place after small
transients in time and/or amplitude. These generalized contractive systems (GCSs) are useful for several
reasons. First, we show that there exist simple and checkable conditions guaranteeing that a system is a
GCS, and demonstrate their usefulness using severalmodels from systems biology. Second, allowing small
transients does not destroy the important asymptotic properties of contractive systems like convergence
to a unique equilibrium point, if it exists, and entrainment to a periodic excitation. Third, in some cases
as we change the parameters in a contractive system it becomes a GCS just before it looses contractivity
with respect to a norm. In this respect, generalized contractivity is the analogue of marginal stability in
Lyapunov stability theory.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Differential analysis is based on studying the time evolution of
the distance between trajectories emanating from different ini-
tial conditions. A dynamical system is called contractive if any
two trajectories converge to one other at an exponential rate.
This implies many desirable properties including convergence to
a unique attractor (if it exists), and entrainment to periodic ex-
citations (Aminzare & Sontag, 2014; Lohmiller & Slotine, 1998;
Russo, di Bernardo, & Sontag, 2010). Contraction theory proved
to be a powerful tool for analyzing nonlinear dynamical sys-
tems, with applications in control theory (Lohmiller & Slotine,
2000), observer design (Bonnabel, Astolfi, & Sepulchre, 2011), syn-
chronization of coupled oscillators (Wang & Slotine, 2005), and
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more. Recent extensions include: the notion of partial contrac-
tion (Slotine, 2003), analyzing networks of interacting agents us-
ing contraction theory (Arcak, 2011; Russo, di Bernardo, & Sontag,
2013), a Lyapunov-like characterization of incremental stability
(Angeli, 2002), and a LaSalle-type principle for contractive systems
(Forni & Sepulchre, 2014). There is also a growing interest in design
techniques providing controllers that render control systems con-
tractive or incrementally stable; see, e.g. Zamani, van de Wouw,
and Majumdar (2013) and the references therein, and also the in-
cremental ISS condition in Desoer and Haneda (1972).

A contractive system with added diffusion terms or random
noise still satisfies certain asymptotic properties (Aminzare &
Sontag, 2013; Pham, Tabareau, & Slotine, 2009). In this respect,
contraction is a robust property.

In this note, we introduce three forms of generalized contrac-
tive systems (GCSs). These are motivated by requiring contraction
with respect to a norm to take place only after arbitrarily small
transients in time and/or amplitude. Our work was motivated by
certain models from systems biology that are not contractive with
respect to any (fixed) norm, yet are ‘‘almost’’ contractive. One ex-
ample is where contraction is lost only on the boundary of the
state space, but trajectories emanating from this boundary ‘‘imme-
diately’’ enter the interior of the state space. Thus,wehave contrac-
tion after an arbitrarily short time transient. The goal of the note is
to rigorously define these formsof contraction, study its properties,
and derive sufficient conditions for its existence. The contribution
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of this note is thus two-fold: the theoretical study of this type of
contraction after an infinitesimal transient, and using this notion
to prove important asymptotic properties in applications. Indeed,
contraction is usually used to prove asymptotic properties, and thus
allowing (arbitrarily small) transients seems reasonable. We pro-
vide several sufficient conditions for a system to be a GCS. These
conditions are checkable, and we demonstrate their usefulness us-
ing several examples of systems that are not contractive with re-
spect to any norm, yet are GCSs.

In some cases, as we change the parameters in a contractive
system it becomes a GCS just before it looses contractivity. In this
respect, a GCS is the analogue of marginal stability in Lyapunov
stability theory.

We begin with a brief review of some ideas from contraction
theory. See Soderlind (2006), Jouffroy (2005) and Rüffer, van de
Wouw, and Mueller (2013) for more details, including the historic
development of contraction theory, and the relation to other no-
tions.

Consider the time-varying system

ẋ = f (t, x), (1)

with the state x evolving on a positively invariant convex set Ω ⊆

Rn. We assume that f (t, x) is differentiable with respect to x, and
that both f (t, x) and J(t, x) :=

∂ f
∂x (t, x) are continuous in (t, x). Let

x(t, t0, x0) denote the solution of (1) at time t ≥ t0 with x(t0) = x0
(for the sake of simplicity, we assume from here on that x(t, t0, x0)
exists and is unique for all t ≥ t0 ≥ 0 and all x0 ∈ Ω).

We say that (1) is contractive on Ω with respect to a norm | · | :

Rn
→ R+ if there exists c > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ exp(−(t2 − t1)c)|a − b| (2)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω . In other words, any two trajec-
tories contract to one another at an exponential rate. This implies
in particular that the initial condition is ‘‘quickly forgotten’’. Note
that Lohmiller and Slotine (1998) provide a more general and in-
trinsic definition, where contraction is with respect to a time- and
state-dependent metric M(t, x). Simpson-Porco and Bullo (2014)
provide a general treatment of contraction on a Riemannian mani-
fold; see also Lewis (1949). Someof the results belowmaybe stated
using this more general framework. But, for a given dynamical sys-
tem finding such ametricmay be difficult; see e.g. Aylward, Parrilo,
and Slotine (2008) for an algorithm for finding such contraction
metrics using sum-of-squares programming.

Another extension of contraction is incremental stability
(Angeli, 2002). Our approach is based on the fact that there exists
a simple sufficient condition guaranteeing (2), so generalizing (2)
appropriately leads to checkable sufficient conditions for a system
to be aGCS. Another advantage of our approach is that aGCS retains
the important property of entrainment to periodic signals.

Recall that a vector norm | · | : Rn
→ R+ induces a matrix mea-

sure µ : Rn×n
→ R defined by µ(A) := limϵ↓0

1
ϵ
(∥I + ϵA∥ − 1),

where ∥ · ∥ : Rn×n
→ R+ is the matrix norm induced by | · |. A

standard approach for proving (2) is based on bounding some ma-
trixmeasure of the Jacobian J . Indeed, it iswell-known (Russo et al.,
2010) that if there exist a vector norm | · | and c > 0 such that the
induced matrix measure µ : Rn×n

→ R satisfies µ(J(t, x)) ≤ −c ,
for all t2 ≥ t1 ≥ 0 and all x ∈ Ω then (2) holds. (This is in fact a
particular case of using a Lyapunov–Finsler function to prove con-
traction Forni & Sepulchre, 2014.)

It is well-known (Vidyasagar, 1978, Ch. 3) that the matrix
measure induced by the L1 vector norm is

µ1(A) = max{c1(A), . . . , cn(A)}, (3)

where

cj(A) := Ajj +

1≤i≤n
i≠j

|Aij|, (4)

i.e., the sum of the entries in column j of A, with non diagonal el-
ements replaced by their absolute values. The matrix measure in-
duced by the L∞ norm is µ∞(A) = max{d1(A), . . . , dn(A)}, where

dj(A) := Ajj +

1≤i≤n
i≠j

|Aji|, (5)

i.e., the sum of the entries in row j of A, with non diagonal elements
replaced by their absolute values.

Often it is useful to work with scaled norms. Let | · |∗ be some
vector norm, and let µ∗ : Rn×n

→ R denote its induced matrix
measure. If P ∈ Rn×n is an invertible matrix, and | · |∗,P : Rn

→ R+

is the vector norm defined by |z|∗,P := |Pz|∗ then the induced
matrix measure is µ∗,P(A) = µ∗(PAP−1).

One important implication of contraction is entrainment to a
periodic excitation. Recall that f : R+ × Ω → Rn is called T-
periodic if f (t, x) = f (t + T , x) for all t ≥ 0 and all x ∈ Ω . Note
that for the system ẋ(t) = f (u(t), x(t)), with u an input (or exci-
tation) function, f will be T -periodic if u is a T -periodic function.
It is well-known (Lohmiller & Slotine, 1998; Russo et al., 2010)
that if (1) is contractive and f is T -periodic then for any t1 ≥ 0
there exists a unique periodic solution α : [t1, ∞) → Ω of (1),
of period T , and every trajectory converges to α. Entrainment is
important in various applications ranging from biological systems
(Margaliot, Sontag, & Tuller, 2014; Russo et al., 2010) to the stability
of a power grid (Dorfler & Bullo, 2012). Note that for the particular
case where f is time-invariant, this implies that if Ω contains an
equilibrium point e then it is unique and all trajectories converge
to e.

The remainder of this note is organized as follows. Section 2
presents three generalizations of (2). Section 3 details sufficient
conditions for their existence, and describes their implications.
Due to space limitations, the proofs of all the results are placed at:
http://arxiv.org/abs/1506.06613.

2. Definitions of contraction after small transients

We begin by defining three generalizations of (2).

Definition 1. The time-varying system (1) is said to be:

• contractive after a small overshoot and short transient (SOST) on
Ω w.r.t. a norm | · | : Rn

→ R+ if for each ε > 0 and each τ > 0
there exists ℓ = ℓ(τ , ε) > 0 such that

|x(t2 + τ , t1, a) − x(t2 + τ , t1, b)|
≤ (1 + ε) exp(−(t2 − t1)ℓ)|a − b|

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .
• contractive after a small overshoot (SO) on Ω w.r.t. a norm | · | :

Rn
→ R+ if for each ε > 0 there exists ℓ = ℓ(ε) > 0 such that

|x(t2, t1, a) − x(t2, t1, b)| ≤ (1 + ε) exp(−(t2 − t1)ℓ)|a − b|

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .
• contractive after a short transient (ST) on Ω w.r.t. a norm | · | :

Rn
→ R+ if for each τ > 0 there exists ℓ = ℓ(τ ) > 0 such that

|x(t2 + τ , t1, a) − x(t2 + τ , t1, b)|
≤ exp(−(t2 − t1)ℓ)|a − b| (6)

for all t2 ≥ t1 ≥ 0 and all a, b ∈ Ω .

The definition of SOST is motivated by requiring contraction at
an exponential rate, but only after an (arbitrarily small) time τ , and
with an (arbitrarily small) overshoot (1 + ε). However, as we will
see below when the convergence rate ℓ may depend on ε a some-
what richer behavior may occur. The definition of SO is similar to
that of SOST, yet now the convergence rate ℓ depends only on ε,
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