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This paper considers the objective performance evaluation of kernel-based time-frequency distributions 
(TFDs) using several concentration performance measures and resolution examination through a deep 
analysis of time slice plots. On the other hand, the numerical complexity of each TFD is evaluated; 
a parameter that is particularly critical when real-time implementation is intended. The performance 
of TFDs based on time-lag kernels with compact support (KCS) namely the Cheriet–Belouchrani (CB), 
the separable (CB) (SCB) and the polynomial CB (PCB) TFDs is compared to the well-known kernel-
based TFDs using several tests on real-life and multicomponent signals with linear and nonlinear 
frequency modulation (FM) components including the noise effects and the influence of the kernel 
length. In all presented examples, the time-lag KCS TFDs, and particularly the PCB TFD, provide the 
best compromise between highest autoterm resolution and interference rejection while still requiring 
moderate computational costs thanks to the compact support nature of their kernels that reduces the 
number of points needing computation. On the other hand, the derived distributions do not require any 
smoothing window neither in time nor frequency in order to achieve the best time-frequency resolution. 
Furthermore, they have an extremely interesting practical advantage since their adjustment is performed 
by simply changing a single parameter which is integer for the PCB TFD.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Real-life signals are generally classified as nonstationary, i.e. as 
signals with time-varying spectra. The study and analysis of these 
signals present a very important concept that finds its usage in 
various technical fields such as acoustics, seismic, radar, sonar, 
telecommunications and biomedical engineering. Among the avail-
able techniques, we are interested in kernel-based time-frequency 
distributions (TFDs) that perform a mapping of one-dimensional 
signal x(t) into a two dimensional function of time and frequency 
TFDx(t, f ) expressed as [1–4]

TFDx(t, f ) =
∫ ∫ +∞∫

−∞
e j2πη(s−t)φ(η, τ )x

(
s + τ

2

)

× x∗ (
s − τ

2

)
e− j2π f τ dηdsdτ (1)
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where φ(η, τ ) is a two-dimensional kernel. Equivalently, one can 
use the time-lag kernel notation G(t, τ ) expressed as the Fourier 
transform of the Doppler-lag kernel φ(η, τ ) with respect to η, i.e.

G(t, τ ) =
+∞∫

−∞
φ(η, τ )e− j2πηtdη; (2)

so that the general class of quadratic TFDs can be defined in terms 
of the analytic signal xa(t) associated to the real signal x(t) and 
the time-lag domain kernel as follows

TFDxa (t, f ) =
+∞∫

−∞

+∞∫
−∞

G(t − s, τ )xa

(
s + τ

2

)
x∗

a

(
s − τ

2

)

× e− j2π f τ dsdτ (3)

Concerning the present paper, our motivation arises from four 
important problematics related to the field of time-frequency sig-
nal analysis (TFSA): First of all, the most efficient quadratic TFDs, 
that belong to the Cohen’s class (Eqs. (1)–(3)), require the spec-
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ification of a kernel that defines the overall performance of the 
induced representation. Although many TFDs have been proposed 
in the literature, there is no specific ideal distribution that can be 
considered as the optimal choice for all possible cases and ap-
plications because every representation suffers from one or more 
drawbacks. This makes the building of new kernels for the analysis 
of time-varying spectra a promising and an open field of research.

Secondly, if time-frequency distributions of quadratic class con-
stitute a powerful tool for nonstationary signals’ analysis, their 
readability, however, is severely affected by the presence of inter-
ference terms that are automatically generated due to the bilinear 
form of these representations. The situation becomes more com-
plex for noisy multicomponent signals while visual inspection is 
difficult and very subjective. This justifies the need for an objective 
informational performance measure for TFDs. This is extremely in-
teresting for TFSA in order to allow automatic tuning of the TFD’s 
parameters so that the performance of the generated distribution 
is optimized. Otherwise, important signal characteristics may be 
corrupted or become lost while the major challenge is to accu-
rately estimate these characteristics whatever is the application: 
telecommunications, seismic, sound processing, blind source sepa-
ration, interference rejection in spread spectrum communications 
systems, estimation of direction of arrival, multicomponent target 
detection, and watermarking in multimedia, just to name a few.

For some critical fields like biomedical engineering, time-
frequency methods have proved a valuable tool based on their 
ability to highlight and describe time-varying characteristics [5]. 
For example, in the field of electroencephalogram (EEG) signal 
analysis, in particular for newborn babies, it is often intuitively 
expected that one needs to use TFDs which reduce the effects 
of crossterms while giving a good resolution [6]. Their ability to 
show how the energy of the signal is distributed over the 2D t– f
domain helps to identify important features such as the number 
of signal components, rate of change, and regions of energy con-
centration [6]. The latter correspond, visually, to the choice of the 
most appealing t– f diagram.

In order to provide an objective assessment for quantifying 
the concentration and resolution performances, we introduce first 
a comparative study between the most used concentration-based 
performance measures applied to time-frequency signal analysis 
namely the Rényi entropy, the ratio of norms and the Stankovic 
measure. Then, the most accurate between them is selected to op-
timize a selection of time-frequency representations including the 
time-lag KCS-based TFDs. Supported by a deep analysis of time 
slices, resolution performance is inspected.

Thirdly, for most of the best-known quadratic TFDs, time-
frequency resolution is commonly enhanced through the introduc-
tion of external windows that smooth the distribution in the time 
and frequency axes. This makes the TFD’s setting harder, slower 
and more complicated because there are many parameters to ad-
just: the type of the windows, their respective lengths and the 
kernel’s smoothing parameters. In fact, the most practical bene-
fit of the proposed time-lag KCS-based distributions over the most 
commonly used TFDs in the literature is that external windowing 
is no longer needed in order to smooth the generated distribution 
in time and/or frequency. This is due to the fact that the window 
is the compact support kernel itself that conserves this property 
when moving from the time-lag domain to the Doppler-lag do-
main and becomes even thinner and more concentrated around 
the origin. Furthermore, the kernels’ tuning is performed through 
a single parameter that is integer for the PCB. This constitutes a 
very specific feature of this kernel that is particularly interesting 
for automated optimization and real-time implementation. How-
ever, controlling the bandwidth extent is more flexible using the 
CB and SCB kernels because they use real smoothing parameters.

The fourth point concerns the perspective of real-time im-
plementation of an embedded electronic time-frequency analyzer 
which has the role of acquiring real-life data, processing, and pro-
viding the most accurate information relative to nonstationary sig-
nals’ energy for specific applications. However, in addition to the 
data length to be processed in real-time, the required computation 
load is the most constraining in the development of embedded 
electronic systems like the widely used FPGA and FPGA/DSP pro-
grammable chips. Computational requirements depend mainly on 
the overall number of arithmetic operations that are reduced to 
simple additions and multiplications. This is expressed by the re-
source utilization, especially in terms of the number of real adders 
and multipliers, that is also proportionally related to power con-
sumption. Knowing that one complex multiplication requires four 
real multiplications and two additions, it is important to evalu-
ate the computational cost in order to determine the hardware 
resources needed to implement a given distribution in terms of 
number of real embedded adders and multipliers. From Eq. (3), 
we see that implementing a kernel-based TFD involves common 
operations of Hilbert transform, autocorrelation function and FFT. 
Hence, the computational cost required to implement a given time-
frequency representation is directly related to the kernel’s order of 
complexity in the time-lag plane.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe mathematically and graphically the compact 
support kernels in the time-lag domain. Section 3 introduces a 
comparative study between the most used theoretical measures 
that deal essentially with signal concentration and serve as ob-
jective performance measures for TFDs. The resolution property is 
described in Section 4 by analysis of time slices of TFDs. Section 5
develops in depth the computational cost of the investigated ker-
nels by giving details about the numerical evaluation of mathemat-
ical operations and functions’ approximations. Section 6 is devoted 
to presenting comparative experimental results obtained by appli-
cations involving energy estimation of a real-life signal, linear and 
nonlinear multicomponent frequency modulated signals including 
the influence of noise and kernel length. Finally, Section 7 con-
cludes the paper.

2. Time-lag kernels with compact support

2.1. The Cheriet–Belouchrani (CB) time-lag kernel

Applied to TFSA, the compact support kernel [7,8] has the fol-
lowing expression in the time-lag plane

G K C S(t, τ ) =
{

e
1
2

(
γ

t2+τ2−1
+γ

)
if t2 + τ 2 < 1

0 otherwise
(4)

where γ is a parameter that controls the kernel’s bandwidth as σ
controls the width of the bell curve for the Gaussian function. The 
CB kernel [8], referred to as KCS, is defined in the time-lag domain 
as

GC B(t, τ ) =
{

eeC B if t2+τ 2

D2 < 1

0 otherwise
(5)

where

eC B = C + C D2

(t2 + τ 2) − D2
(6)

is the exponent of the kernel; D is a predetermined parameter and 
C is a tuning positive real number that is inversely proportional to 
the kernel’s bandwidth. Fig. 1 shows the plots of the KCS kernel in 
the time-lag domain for different values of C and D = 2.5 while 
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