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The problem of identification of multivariate autoregressive processes (systems or signals) with unknown 
and possibly time-varying model order and time-varying rate of parameter variation is considered and 
solved using parallel estimation approach. Under this approach, several local estimation algorithms, with 
different order and bandwidth settings, are run simultaneously and compared based on their predictive 
performance. First, the competitive decision schemes are considered. It is shown that the best parameter 
tracking results can be obtained when the order is selected based on minimization of the appropriately 
modified Akaike’s final prediction error statistic, and the bandwidth is chosen using the localized version 
of the Rissanen’s predictive least squares statistic. Next, it is shown that estimation results can be 
further improved if a collaborative decision is made by means of applying the Bayesian model averaging 
technique.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Autoregressive models have found a large number of applica-
tions in many research areas such as signal prediction [1], adap-
tive control [2], equalization of telecommunication channels [3], 
biomedical signal analysis [4–7], elimination of impulsive distur-
bances from archive audio signals [8], and spectrum estimation 
[9], among many others. Such models are rarely based on physical 
insights and therefore their coefficients usually have no physical 
interpretation. However, they have some obvious advantages: they 
are easy to build using statistical inference and, more importantly, 
they allow mathematically tractable formulations and then solu-
tions for problems arising in applications mentioned earlier.

When the analyzed process (system or signal) is nonstationary, 
identification of its autoregressive model can be carried out using 
local estimation techniques. In such a case two important decisions 
must be taken: selection of the estimation bandwidth (inversely 
proportional to the size of the local analysis window), i.e., the 
frequency range in which process parameters can be tracked “suc-
cessfully” [10], and selection of the model order.

In the system identification case, estimation bandwidth should 
be chosen in accordance with the degree of system nonstationarity 
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(quantifying how fast the statistics of the underlying process vary 
in time), so as to trade off the bias and variance components of the 
mean squared parameter tracking error. Selection of the model or-
der should be made in a way that allows one to capture the dom-
inant system dynamics under the information content constraints 
imposed by the limited estimation bandwidth. Both overfitted and 
underfitted models suffer from quantitative and qualitative draw-
backs such as lower predictive capabilities, neglected or nonexis-
tent dynamics, etc.

The appropriate choice of model order and estimation band-
width is equally important in signal analysis applications, where 
autoregressive modeling is often used for the purpose of paramet-
ric spectrum estimation [11]. Misspecified order and/or bandwidth 
may result in the incorrect resonant structure of the estimated 
spectrum (existence or nonexistence of spectral peaks may lead 
to wrong qualitative interpretation of the spectrum), as well as in 
increased estimation errors.

Finally, we note that the problems of bandwidth and order se-
lection are mutually coupled since, according to the principle of 
parsimony [10], smaller bandwidth allows one to estimate a larger 
number of model parameters and vice versa.

The problem of joint bandwidth and order adaptation for 
the purpose of noncausal identification of autoregressive signals
was considered for the first time in our earlier papers [12] (for 
weighted Yule–Walker algorithms) and [13] (for doubly exponen-
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tially weighted lattice algorithms). In the current paper we will 
study the analogous problem for multivariate autoregressive sys-
tems with exogenous inputs, identified using causal exponentially 
weighted least squares algorithms. We will propose and compare 
several decision rules based on the modified (localized) Akaike’s fi-
nal prediction error (FPE) statistic [14], [15] and on the predictive 
least squares (PLS) principle [16], [17], [18]. Finally, we will show 
how the “hard selection” (competitive) scheme can be extended to 
a “soft selection” (collaborative) one, based on the Akaike’s con-
cept of Bayesian model averaging [19], [20]. Interestingly, some 
of the qualitative conclusions reached for causal estimators differ 
from those reported in [12] for noncausal ones. The paper extends 
preliminary results presented in [21].

2. System description

Consider the time-invariant multivariate system governed by 
the ARX (autoregressive with exogenous input) equation

y(t) =
n∑

i=1

Ai(t)y(t − i) +
n∑

i=1

Bi(t)u(t − i) + e(t)

cov[e(t)] = ρ(t)

(1)

where t = 1, 2, . . . denotes normalized (dimensionless) time, y(t) =
[y1(t), . . . , ymy (t)]T denotes the my-dimensional output signal, 
u(t) = [u1(t), . . . , umu (t)]T denotes the mu-dimensional observable 
input signal, e(t) denotes zero-mean white input noise, and Ai(t), 
Bi(t) are the my ×my- and my ×mu-dimensional matrices of time-
varying autoregressive and input coefficients, respectively:

Ai(t) =
⎡
⎢⎣

αT
1i(t)
...

αT
my i(t)

⎤
⎥⎦ , Bi(t) =

⎡
⎢⎣

βT
1i(t)
...

βT
my i(t)

⎤
⎥⎦

i = 1, . . . ,n i = 1, . . . ,n,

(2)

where αli(t) = [al1,i(t), . . . , almy ,i(t)]T and βli(t) = [bl1,i(t), . . . ,
blmu ,i(t)]T for l = 1, . . . , my .

Denote by θ
j
n(t) = [αT

j1(t), . . . , α
T
jn(t), βT

j1(t), . . . , β
T
jn(t)]T the 

dn-dimensional, dn = n(my + mu), vector of parameters charac-
terizing the j-th output, called also the j-th channel, of the ARX 
system, and by ϕn(t) = [yT(t −1), . . . , yT(t −n), uT(t −1), . . . , uT(t −
n)]T – the corresponding regression vector (the same for all 
channels) of the same dimension. Finally, denote by θn(t) =
[(θ1

n(t))T, . . . , (θmy
n (t))T]T = vec{[A1(t), . . . , An(t), B1(t), . . . , Bn(t)]T}

the vector made up of all Dn = mydn system parameters and 
let �n(t) = Imy ⊗ ϕn(t) = diag{ϕn(t), . . . , ϕn(t)} where the sym-
bol ⊗ denotes Kronecker product of two matrices/vectors. Using 
this shorthand notation, (1) can be rewritten in the form

y(t) = �T
n(t)θn(t) + e(t) . (3)

When system parameters vary slowly with time they can be es-
timated using a localized least squares (LS) algorithm, such as the 
one based on the well-known method of exponentially weighted 
least squares (EWLS). To achieve the effect of forgetting ‘old’ data, 
the sum of squares minimized in the method of least squares is re-
placed with the exponentially weighted sum of squares, resulting 
in the following EWLS estimator [22]

θ̂n|k(t) = arg min
θn

t−1∑
i=0

λi
k ‖ y(t − i) − �T

n(t − i)θn ‖2

ρ̂n|k(t) = 1

Lk(t)

t−1∑
i=0

λi
k[y(t − i) − �T

n(t − i)̂θn|k(t)]

× [y(t − i) − �T
n(t − i)̂θn|k(t)]T

(4)

where λk , 0 < λk < 1 denotes the so-called forgetting constant (the 
subscript k is needed to differentiate between several candidate 
forgetting factors as discussed in Section 3) and

Lk(t) =
t−1∑
i=0

λi
k = 1 − λt

k

1 − λk
(5)

is the effective width of the exponential window quantifying the 
estimation memory of the EWLS tracker. In steady state, i.e., for 
large values of t , the effective window width converges to a con-
stant value Lk(∞) = 1/(1 − λk).

The EWLS estimates can be computed recursively which allows 
for real-time applications. Moreover, the computations can be ar-
ranged in an order-recursive way, which means that all lower-order 
models θ̂n|k(t), ρ̂n|k(t), n = 1, . . . , N − 1, can be obtained in the 
course of estimation of the highest-order model θ̂ N|k(t), ρ̂N|k(t)
[23].

When the identified system is nonstationary and its identifica-
tion is carried out using the EWLS approach, two important design 
decisions must be taken. First, the system order(s) should be cho-
sen appropriately. If the number of estimated coefficients is too 
small, i.e., the order is underestimated, the obtained system model 
may fail to correctly describe system dynamics. If the order is over-
estimated, i.e., if some superfluous coefficients are estimated, the 
descriptive (e.g. predictive) capabilities of the model also deterio-
rate – the fact well known in statistics [22]. Second, the estimation 
memory of the parameter tracking algorithm should be chosen 
so as to match the degree of system nonstationarity,1 trading off 
the bias and variance components of the mean squared parameter 
tracking error. The effective memory Lk(t) should be large when 
parameters vary slowly with time, and small in the presence of 
fast parameter changes [10], [24]. If the degree of system nonsta-
tionarity changes over time, estimation memory should be selected 
in an adaptive fashion. This problem is often referred to as adap-
tive bandwidth scheduling.

3. Competitive order and bandwidth scheduling

Our approach is based on parallel estimation. Consider K time-
and order-recursive EWLS algorithms, with different forgetting fac-
tors λk, k = 1, . . . , K , working in parallel and yielding at each time 
instant K N estimates: θ̂n|k(t), ̂ρn|k(t), n = 1, . . . , N , k = 1, . . . , K . 
Within the competitive framework, one looks for the best-local 
values of n and k. The model adopted at the instant t has the form

θ̂ n̂(t)|̂k(t)(t), ρ̂n̂(t)|̂k(t)(t). (6)

When system identification/tracking is carried out using the EWLS 
approach, instead of the LS approach, the local model order and 
estimation bandwidth selection can be performed by minimizing 
over n and k the following generalized version of the MFPE statis-
tic [originally developed in [26] for estimation of the model order 
only] – see Appendix

1 For a nonstationary autoregressive process, nonstationarity degree can be de-
fined in terms of the local rate of change, with respect to time, of its time-varying 
autocorrelation function Ry(t, τ ) = E[y(t)yT(t − τ )], see [25].
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