
JID:YDSPR AID:2300 /FLA [m5G; v1.234; Prn:19/03/2018; 10:09] P.1 (1-12)

Digital Signal Processing ••• (••••) •••–•••

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Signal enumeration in Gaussian and non-Gaussian noise using entropy 

estimation of eigenvalues

Hamid Asadi a,∗, Babak Seyfe b

a Department of Electrical Engineering, Shahed University, Tehran, Iran
b Information Theoretic Learning Systems Laboratory (ITLS-Lab), Department of Electrical Engineering, Shahed University, Tehran, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Source enumeration
Eigenvalues
Entropy estimation
Kernel function
Non-Gaussian noise

In this paper, a novel method based on the entropy estimation of the observation space eigenvalues is 
proposed to estimate the number of independent sources impinging on a sensor array. In this method we 
do not need to know a priori information about the noise model and we can use it in any Gaussian or 
non-Gaussian model of observations and noise. Our analytical results show that the proposed algorithm 
is consistent and an approximation for probability of false alarm and an upper bound for probability of 
missed detection are derived analytically. The performance of the proposed algorithm is compared with 
the existing methods in the presence of Gaussian and non-Gaussian noise via the simulations. It is shown 
that this information theoretic method called EEE, has a better performance than those methods in the 
literature, especially in non-Gaussian noise environment.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Signal enumeration has an important role in several fields such 
as brain imaging [1], neural networks [2], audio signals separa-
tion [3] and finance [4]. Also, in Direction Of Arrival (DOA) estima-
tion, the number of sources must be known [5].

Some of the proposed solutions for signal enumeration problem 
are based on information theoretic criteria, for example Akaike-
Information Criterion (AIC) [6], Bayesian Information Criterion 
(BIC) [7], Minimum Description Length (MDL) [8], and Predictive 
Description Length (PDL) [9]. AIC and MDL, minimize the Kullback–
Leibler distance between the observations and the data model that 
is estimated by the maximum likelihood estimator. The perfor-
mance of MDL and AIC, has been studied in [10], and [11]. In [12], 
the probability of missed detection in MDL is derived using the 
Tracy–Widom distribution for the largest eigenvalue of noise sub-
space and Gaussian distribution for signal subspace. In [13], new 
frameworks for analytically evaluating the statistical performance 
of eigen-decomposition based detectors are considered. Also, in 
there the exact and asymptotic bounds of the overestimation prob-
ability of AIC and MDL are discussed. In [14], the performance of 
information theoretic based-estimators have been analysed in the 
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case of both Gaussian sources and Gaussian noise. They used the 
asymptotic distribution of the sample eigenvalues and it is shown 
that the performance of MDL estimator is not very sensitive to the 
actual distribution of source signals.

Perry and Wolfe, considered the problem of optimal rank es-
timation by developing a decision-theoretic rank estimation such 
as min–max algorithm [15]. In [16], the number of sources is es-
timated using hypothesis testing as a Neyman–Pearson approach. 
Also, the probability of overestimation and its bounds are com-
puted. The signal strength required for a high probability detection 
has been analysed and the results are combined with the random 
matrix theory (RMT) concepts and then a new signal enumera-
tion algorithm has been developed. In [17], Lu and Zoubir devel-
oped a two-step test for signal enumeration, where both of tests 
are based on the thresholding approach. The first step is similar 
to [16], except the thresholds used in [16] and [17] are based on 
Tracy–Widom distribution and Marčenco–Pastur distribution, re-
spectively. In [18], signal enumeration problem is investigated us-
ing a criterion based on Generalized Bayesian Information Criterion 
(GBIC). In the GBIC algorithm, the density of sample eigenvalues 
has been incorporated with the statistics in BIC, and two algo-
rithms, denoted by GBIC1 and GBIC2, have been developed which 
are suitable for small sample size and large sample size of obser-
vation time, respectively. In [19], by a correlation matrix decompo-
sition method and using the directions of arrival of the signals, the 
number of independent sources is estimated. In [20], signal enu-
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meration problem is considered using the squared Euclidean norm 
of the product vector of the steering and Hankel matrices in low 
SNR regime.

In a different work done by Baik et al. [21], it is shown that only 
the signal with strength greater than a certain threshold can be 
detected. This phenomenon called phase transition and it says the 
signals with smaller strength than the threshold will be considered 
as the noise signal.

In the most published works, for example [6–20], the authors 
assumed that the noise is Gaussian and white both spatially and 
temporally. But in many cases, due to the impulsive nature of the 
noise, such as sonar [22,23] and impulsive man-made noise in ur-
ban and indoor wireless systems [24,25], the noise model is often 
non-Gaussian or impulsive.

Based on the best knowledge of the authors, the only work to 
estimate the number of signals in the presence of impulsive noise, 
is [26]. In there, signal enumeration is investigated via bootstrap 
method and robust statistics to estimate the source number in 
an environment with an impulsive noise model. They combined 
two robust estimators, i.e. the minimum covariance determinant 
(MCD) estimator and the MM-estimator, with the bootstrap and 
applied them in the presence of non-Gaussian noise. Also, in [17], 
since no Gaussian assumption for data model is used for the first 
step test, it is claimed that the proposed test can be used for the 
non-Gaussian noise cases, but no result has been presented in this 
regard.

In this paper, we use a novel approach based on the infor-
mation earned from the estimated eigenvalues in a sensor array. 
We use N temporal samples to generate P (the number of ar-
ray sensors) spatial samples to compute the number of signals. 
By implementing the kernel methods, the information (entropy) 
of the estimated eigenvalues will be computed to separate the ob-
servation space into signal and noise subspaces. In this method, 
called Entropy Estimation of Eigenvalues, EEE, we do not need to 
know a priori information about the observations. We only assume 
that the sources are independent. Then, the proposed algorithm 
has the ability to deal with the signal enumeration problem in 
the presence of Gaussian and non-Gaussian noise models. It will 
be shown that the proposed algorithm is consistent, i.e. EEE could 
detects true number of sources with probability approaching one 
when the number of observations tends to infinity. Also, an ap-
proximation for false alarm probability and an upper bound for 
missed detection probability will be derived analytically. Based on 
the simulation results, we have shown that the proposed method 
performs better than all the methods reported in the literature in 
Gaussian and non-Gaussian noise. Especially, in impulsive or non-
Gaussian noise model, its performance is obviously better than the 
others.

This paper is organized as follow: in section 2, we present mod-
els and preliminaries. In section 3, we present our motivation to 
signal enumeration by entropy estimation of the eigenvalues. In 
section 4, we show that the proposed algorithm is consistent. Sec-
tions 5 and 6, consist of the performance analysis of the proposed 
method, and simulation results, respectively. Finally, section 7 con-
cludes the paper.

Notations: In this paper, we present the matrices by upper-
case boldface, i.e. X, and vectors by lowercase boldface, i.e. x. We 
use â as an estimation of a. Also N (0,�) denotes the Gaussian 
probability of density function (pdf) with zero vector mean and 
positive definite covariance matrix �. λ j

i is a vector with samples (
λi, λi+1, ..., λ j

)
. For a Random variable, Almost sure convergence

also known as convergence with probability one that is shown by 
(w.p.1).

2. System model and preliminaries

2.1. Problem formulation

Assume that K sources emit their signals, independently, to P
(P > K ) sensors. The received signal at the receiver is denoted by

x(t) = As(t) + n(t), (1)

where x(t) = [x1(t), · · · , xP (t)]T is the received vector at the P
sensors, and A = [a1, · · · , aK ] is the steering matrix where ai, i =
1, · · · , K are linearly independent P -dimensional vectors. Also, the 
components of the vector s(t) = [s1(t), ..., sK (t)]T are zero mean 
and complex random processes. s(t) has positive definite covari-
ance matrix RS = diag(p1, . . . , pK ) where pi, 1 ≤ i ≤ K , is the re-
ceived power of the ith source. n(t) is the noise that is assumed 
to be additive white zero mean with unknown noise power 

(
σ 2

)
which is independent from s(t). Using (1), the population covari-
ance matrix of the received signal from eigen-decomposition can 
be formulated as follows [8]

C = E
[

x(t)xH (t)
]

= ARS AH + σ 2IP

= U�UH , � = diag (λ1, λ2, . . . , λP ) , (2)

where IP denotes the P -dimensional identity matrix, U is the 
eigenvectors matrix with dimension K × P , and (λ1, λ2, . . . , λP )

are the eigenvalues of the population covariance matrix and they 
are ordered as λ1 ≥ ... ≥ λK > λK+1 = ... = λP [8]. The first K
eigenvalues, i.e. (λ1, λ2, ..., λK ), are called signal subspace eigenval-
ues, because they are contributed by the source signals and noise. 
The other smallest (P − K ) eigenvalues which belong to the noise 
subspace, equal to σ 2 [8]. In a limited observation time like as 
[t1, · · · , tN ], an approximation of the sample covariance matrix, can 
be written as

Ĉ = 1

N

N∑
i=1

[
x (ti)xH (ti)

]

= Û�̂ÛH , �̂ = diag
(
λ̂1, λ̂2, ..., λ̂P

)
, (3)

where 
(
λ̂1, ̂λ2, ..., ̂λP

)
are the sample eigenvalues and λ̂1 ≥ λ̂2 ≥

... ≥ λ̂P . Using the weak law of large numbers (WLLN), Ĉ and �̂
in (3) tend to the population covariance matrix C, and eigenvalue 
matrix �, asymptotically as N → ∞, respectively [16].

2.2. Preliminaries

In this subsection, we present some used concepts in our anal-
ysis to estimate the number of sources.

2.2.1. Kernel functions
In [27], Paninski showed that the estimation of the probability 

spaces, only from observation samples, is an important challenge 
and could be a much difficult problem, and a solution on how to 
combat with these type of challenges is: nonparametric estimators. 
Also, three algorithms were investigated by Paninski to estimate 
the entropy: maximum likelihood (ML) [28,29], Miller–Madow bias 
correction [30], and jackknifed-MLE [31]. All of the above investi-
gated algorithms, are nonparametric estimators that it means they 
need to estimate the probability space from the observed sam-
ples. We will estimate the entropy directly from the observations 
without knowing about its probability distribution function. This 
method is based on the kernel functions which are developed by 
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