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In this paper, we proposed an effective and computationally efficient algorithm without iterations, 
named general sparse denoising with total variation regularization (GSDN-TV), for solving the convex 
optimization problem of combining the sparse regularization and total variation (TV) regularization. 
In the GSDN-TV, the original convex optimization problem is divided into two convex optimization 
subproblems. Each of the subproblems only contains one regularization and can be efficiently solved 
or has the closed-form solution. The final solution of the original problem can be obtained by solving 
the two subproblems one by one without iterations. By using the non-convex firm penalty function in 
the sparse regularization, the GSDN-TV is applied to the wavelet-TV denoising problem and achieves 
outstanding performances.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Wavelet denoising with soft-thresholding is an effective and 
computationally efficient method for noise reduction in the signal 
processing field. However, the soft-thresholding, which performs 
the sparsity on the wavelet transform domain, often seems to suf-
fer from some artifacts such as spurious noise spikes and pseudo-
Gibbs oscillations [1,2]. To overcome this drawback, an effective 
way is to use the total variation (TV) denoising by introducing the 
TV regularization in the spatial/time domain [3–5], but it can in-
duce the undesirable staircase artifacts [6,11].

A successful approach is to combine the sparsity in the wavelet 
transform domain and TV regularization in spatial or time do-
main [6,7]. The similar strategy also can be seen in [8–10]. Al-
though these methods can achieve good performance for the signal 
denoising, an important problem is how to efficiently solve the 
problem with hybrid regularization [6]. The hybrid regularization 
can include several regularization terms that do not necessarily 
act in the same domain (e.g., spatial/time and wavelet transform 
domains). To solve the optimization problem with hybrid regular-
ization, Pustelnik et al. [6] proposed an accelerated version of the 
parallel proximal algorithm, and Wang et al. [7] were based on the 
alternate iterative algorithm by using the variable splitting method. 
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However, all these methods need to make convergence after many 
iterations.

Recently, Ding and Ivan [11] proposed the unified wavelet-TV 
(WATV) denoising algorithm based on based on alternating di-
rection method of multipliers (ADMM) algorithm framework. In 
their method, the sparse regularization in the wavelet-domain is 
expressed by a non-convex penalty function, because it can in-
duce sparsity more strongly. By choosing a suitable parameter of 
the non-convex function so that satisfying the convexity condition, 
the objective function of the denoising problem can remain con-
vex and can be solved based on ADMM algorithm. However, the 
ADMM algorithm is also not a very effective algorithm, and it in-
troduces extra parameter which needs to be specified by the user 
[12]. The idea of combining the sparse regularization and TV reg-
ularization can be traced back to the problem of the fused lasso 
[13], in which the problems of sparse denoising and TV denoising 
are fused together. The fused lasso problem is further extended to 
the non-convex penalty function as the regularization [14]. Most 
of these algorithms for solving the fused lasso problem are based 
on some iterative algorithms, such as majorization-minimization 
(MM) [12] or ADMM [11].

In this paper, we proposed an effective and computationally ef-
ficient algorithm, named general sparse denoising with TV regular-
ization (GSDN-TV), without iterations. In the GSDN-TV, the original 
convex optimization problem, containing the sparse regularization 
and TV regularization, is solved by solving two convex subprob-
lems one by one. The GSDN-TV is partly motivated by the works 
[15,16] and extends them to the more general case. One of the 
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subproblems in the GSDN-TV, which only contains the TV reg-
ularization, can be efficiently solved by using the TV denoising 
algorithm [17] by using the taut string algorithm [18]. The other 
one, which only contains the sparse regularization, can be exactly 
solved by using the proximity operator of the penalty function of 
the regularization. We apply the GSDN-TV to the WATV denois-
ing problem by using the firm penalty function [19] in the sparse 
regularization, because it can induce sparsity more strongly and 
has the proximity operator in closed-form expression. Moreover, 
our experimental results show that the proposed WATV algorithm 
based on the GSDN-TV achieves compatible to the method based 
on ADMM in [11] but it doesn’t need iteration.

Compared with the current algorithms, such as [6,7,11], the 
main contribution of the paper is twofold. i) We suggest that the 
sparse denoising problem with non-convex sparse penalty function 
and TV regularization can be efficiently solved by solving two sub-
problems one by one without using the iteration algorithms, such 
as MM and ADMM; ii) We use the non-convex firm penalty func-
tion in the sparse regularization to induce sparsity more strongly 
and give its convexity condition.

2. General sparse denoising with TV regularization

2.1. Problem formulation

The noisy signal y ∈ R
N can be modeled as

y = s + n (1)

where s ∈ R
N and n ∈ R

N are the clean signal and the noise, re-
spectively. Suppose that W ∈ RN×N is an orthogonal basis, such as 
the discrete wavelet basis, satisfying WT W = I. Then, y and s can 
be represented as y = Wc and s = Wx, where c ∈ R

N and x ∈ R
N

are their coefficient vectors over the orthogonal basis W. On the 
other hand, given the signals y and s, their coefficient vectors can 
be easily obtained by c = WT y and x = WT s based on the orthog-
onality of W.

Assume that the estimated signal s is sparse over the orthog-
onal basis W and that its first-order difference is also sparse in 
the signal domain. With these assumptions, the coefficient vector 
x of the clean signal s can be estimated by solving the following 
optimization problem

x∗ = arg min
x∈RN

{
F (x) = 1

2
‖Wx − y‖2

2 + λ11T φ(x) + λ2‖DWx‖1

}

(2)

where λ1 > 0 and λ2 > 0 are the regularization parameters and 1
represents the vector of all ones. The sparse regularization term 
1T φ(x) characterizes the sparsity of the coefficient vector x, where 
φ(x) denotes the component-wise application of the non-smooth 
sparsity inducing penalty function φ : R → R, i.e., [φ(x)]i = φ(xi). 
The TV regularization term ‖DWx‖1 characterizes the sparsity of 
the first-order difference of the clean signal s, where the matrix 
D ∈ R(N−1)×N denotes the first-order difference matrix, as defined 
in [11,22].

2.2. General sparse denoising with TV regularization

Consider the following two optimization problems. The first 
problem is the sparse denoising problem (SDP) and is formulated 
as

min
x∈RN

{
fφ(x) = 1

2
‖x − y‖2

2 + λ11T φ(x)

}
(3)

where φ(x) denotes the component-wise application of the non-
smooth sparsity inducing penalty function φ :R →R, i.e., [φ(x)]i =

φ(xi). Suppose that the objective function fφ(x) is convex and then 
its solution can be uniquely represented by the proximity operator 
θφ :RN →R

N of the penalty function φ, that is

θφ(y;λ1) = arg min
x∈RN

{
fφ(x) = 1

2
‖x − y‖2

2 + λ11T φ(x)

}
(4)

The second problem is the TV denoising problem (TVDP)

min
x∈RN

{
f T V (x) = 1

2
‖x − y‖2

2 + λ2‖Dx‖1

}
(5)

where D is the first-order difference matrix. The objective function 
f T V (x) is convex and it can be solved efficiently, according to [17]. 
Its solution can be defined by the proximity operator θT V : RN →
R

N , that is

θT V (y;λ2) = tvd(y, λ2) (6)

where the tvd(y, λ2) can be implemented efficiently by the TV de-
noising algorithm [17] by using the taut string algorithm [18].

With the above SDP and TVDN subproblems, we present the 
general sparse denoising with TV regularization (GSDN-TV) algo-
rithm in Algorithm 1:

Algorithm 1 General sparse denoising with TV regularization 
(GSDN-TV) algorithm.
Input:

Noisy signal y and regularization parameters λ1, λ2

Procedure:
(a) Given y, and then solve the TVDP

s∗
1 = θT V (y, λ2) (7)

(b) Let x∗
1 = WT s∗

1, and then solve the SDP

x∗
2 = θφ

(
x∗

1;λ1
)

(8)

Output:

x∗ = x∗
2 (9)

Theorem 1. Assume that the optimization problems in (2) and (3) are 
convex. Assume that the penalty function φ(x) in Eq. (3) is permutation 
invariant, that is, [θφ(x)]m ≥ [θφ(x)]n for xm ≥ xn. The output of the 
GSDN-TV algorithm in Algorithm 1, x∗ , is the solution of the optimization 
problem (2).

The proof of Theorem 1 can be found in Appendix A.1.
Note that, the GSDN-TV algorithm extends the results in [15,

16]. In their works, the penalty function φ of the SDP in (3) for 
inducing the sparsity is �1 norm, which is a special case of Al-
gorithm 1 with the regularization ‖x‖1 and the orthogonal basis 
W = I.

Theorem 1 states that the optimization problem (2) can be di-
rectly solved without using iteration algorithms, such as MM or 
ADMM, if the penalty function φ(x) in SDP is permutation invari-
ant and both subproblems can be efficiently solved or have the 
closed-form solution. The TVDN be effectively solved by using the 
TV denoising algorithm [17]. The solution of the SDP, however, de-
pends on the selection of the penalty function, i.e., whether the 
penalty function has a closed-form proximity operator or not.

3. Efficient wavelet-TV denoising algorithm with firm 
thresholding

3.1. Firm penalty function and convexity condition

Although several non-convex penalty functions (see [22,21] for 
details), such as logarithmic (log), arctangent (tan), first order ra-
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