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This paper provides a review of the Teager–Kaiser (TK) energy operator and its extensions for signals 
and images processing. This class of operators possesses simplicity and good time-resolution and is very 
efficient in instantaneously estimating AM–FM signals and images. We point out the importance of the 
concept of energy from the point of view of the generation of the signal. More precisely, we emphasize 
the importance of analyzing signals from the point of view of the energy of the system needed to 
produce them. We show how this class of TK energy operators can be used to estimate useful features 
for signals and images analysis in time, space and frequency domains such as instantaneous frequency, 
second-order moment frequency, coherence function or spatial envelope and phase. We also show the 
importance of the higher derivative order of TK energy operator in terms of demodulation for both mono 
and multi-dimensional signals. Most of the developed tools around TK energy operators deal with real 
and complex-valued signals and some of them extended to multi-dimensional case. Due to their low 
complexity and their instantaneous-adapting nature, the class of TK energy operators offers valuable 
processing tools for time and frequency analysis.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Signals may represent a broad variety of phenomena. In many 
applications, signals are directly related to physical quantities cap-
turing energy and power in a physical system. The concept of 
signal energy is of primary importance in the design of continuous 
and discrete domain systems [1–7]. This work is interested in sig-
nals provided by sensors and thus, to the energy associated with 
these signals. In the real world, we always transmit signals with 
finite total energy 0 < Ex < +∞ (or with finite average power) 
representing the amount of energy contained in signal x(t). The 
quantity Ex should be independent of the method used to calcu-
late it. Engineers refer to such signals as having finite total energy, 
although Ex is not necessarily the physical energy of the signal x(t). 
For example, the total energy of the source system modeled as a 
mass suspended by a spring of a constant stiffness required to pro-
duce a simple undamped harmonic oscillation is calculated by the 
sum of the kinetic energy of the mass and the potential energy in 
the spring. By studying the second order differential associated to 
this harmonic oscillator, it is easy to show that a simple sinusoidal 
varies as a function of both amplitude and oscillation frequency of 
the signal x(t), which is quite different from simple squaring of the 
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signal magnitude, x2(t). It is this source modeling that is used for 
characterizing x(t) by amplitude and frequency.

In their work on non-linear speech modeling, Herbert and 
Shushan Teager pointed out the dominance of modulation as a 
process in the speech production [8,9]. Based on the Teager’s work, 
Kaiser proposed an energy measure that includes both the ampli-
tude and the frequency of the signal [3]. This measure is often 
referred to as the Teager–Kaiser (TK) energy operator. Using the 
conventional view of the energy, it is easy to see that two tones 
at 10 Hz and 1000 Hz of unit-amplitude have the same energy. 
However, the energy required to produce the signal of 1000 Hz is 
much greater than that for the 10 Hz signal [3]. Using TK defini-
tion of energy, the two tones show different energy. This definition 
highlights the concept of signal energy from the point of view of 
the generation of the signal and emphasizes the importance of an-
alyzing signals from the energy aspect of the system needed to 
produce them. In the following, the theory behind TK energy op-
erator and its different extensions as tools for time, frequency and 
TF analysis of signals, and for estimation of envelope and phase for 
images is presented. This class of operators is illustrated on simu-
lated and real data.

2. Teager–Kaiser energy operator

In its continuous form, TK energy operator, noted �c , when op-
erating on continuous-time signal x(t) is given by [3]
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�c [x(t)] �
(

dx(t)

dt

)2

− x(t)

(
d2x(t)

dt2

)
= ẋ2(t) − x(t)ẍ(t) (1)

where ẋ(t) and ẍ(t) are the first and the second derivative of x(t)
with respect to time t respectively. When �c is applied to signals 
generated by a simple harmonic oscillator (mass-spring oscillator 
of constant stiffness), it can track the oscillator’s energy (per half 
unit mass) which is proportional to the squared product of the 
oscillation amplitude and frequency. For narrowband signal x(t)
and under realistic conditions,1 �c [x(t)] approximately estimates 
the energy of the source producing the oscillation x(t). Using, 
for example, the backward approximation of the time derivatives 
(Eq. (1)), the discrete-time counterpart of �c becomes

�d [x(n)] = x2(n − 1) − x(n)x(n − 2)

(�t)2
(2)

where x(n) = x(n�) with �t = 1/ f s and n ∈ N; f s is the sampling 
frequency. Equation (2) is scaled and centered yielding

�d [x(n)] = x2(n) − x(n − 1)x(n + 1) (3)

The energy operator spans three adjacent samples of x(t) and 
is still a very local property of x(t). This input–output relation 
is called by Kaiser “Teager’s algorithm” [3]. For a tone x(n) =
A cos(ωn + φ0), TK operator yields

�d [x(n)] ≈ A2ω2 (4)

with ω < π/4. This property is also valid for damped sinusoids of 
the form

x(n) = rn cos(ωn + φ0) (5)

The operator �d [x(n)] approximates the product of squared am-
plitude and frequency of x(n) and can be termed as frequency-
weighted energy. The non-linear operators �c and �d were devel-
oped by Teager [9,10] and introduced by Kaiser [3,11]. Note that 
�d [x(n)] is independent of the initial phase of x(t), symmetric 
and capable of responding very quickly to changes in amplitude 
and frequency of x(t) [3]. Furthermore, it is robust even when x(n)

passes through zero, as no division operation is required. The op-
erator �d [x(n)] offers excellent time resolution because only three 
samples (x(n − 1), x(n), x(n + 1)) are required for the energy com-
putation at each time instant n�t , so it has good adaptability to 
the instantaneous changes in x(t). This why TK operator is well 
adapted, for example, for measuring formant modulation. The re-
sponse of �d [x(n)] is nearly instantaneous and this operator can 
be easily implemented in DSP processors, due to its low computa-
tion cost and extremely low requirements of memory storage.

The TK operator has been discussed from the mathematical 
point of view. For example, it has been characterized algebraically 
by giving expressions of the outputs corresponding to different 
types of combination (e.g. linear, algebraic) of input signals and 
classified the root and pre-constant signals of the operator [12]. 
The matrix framework of the operator has been introduced in [13]
by interpreting it as the determinant of a Toeplitz matrix contain-
ing the signal and its derivatives:

�c [x(t)] =
∣∣∣∣ ẋ(t) x(t)
ẍ(t) ẋ(t)

∣∣∣∣ ; �d [x(n)] =
∣∣∣∣ x(n) x(n + 1)

x(n − 1) x(n)

∣∣∣∣
1 The amplitude and the frequency of the signal do not vary too fast (rate of 

change) or too greatly (range of value) with time compared to carrier frequency.

The determinant is time-invariant for a signal with constant fre-
quency. If such matrix is generalized to an M × M Toeplitz matrix 
by adding delayed x(n) up to x[n ± (M − 1)], the determinant is 
also time-invariant [13,14]. This time-invariant property can be ex-
ploited using probe tones to uncover the amplitudes and frequen-
cies of multiple sinusoids [13]. Using this matrix framework, the 
output of the TK operator is interpreted as the measured energy 
corresponding to the square of the eigenvalue of its underlying 
energy matrix, a notion analogous to that seen in quantum me-
chanics [15]. An extension of this matrix framework to generalized 
TK operator has been introduced in [16].

2.1. Multiresolution Teager–Kaiser energy operator

To resolve two closely spaced tones (AM signal), an extended 
version of TK operator has been developed by introducing a lag 
parameter, k, in the expression (3) as follows [17]

�dk [x(n)] = x2(n) − x(n − k)x(n + k) (6)

where k ∈ N is a resolution parameter. For a dual tones with fre-
quencies f1 and f2, an optimal choice of k parameter enhances 
the difference ( f1 − f2) or the sum frequency ( f1 + f2) [17]. For a 
sinusoidal input x(n) = A cos(ωn), the operator output is given by

�dk [x(n)] ≈ (A sin(ωk))2 (7)

where k = π/2ω (ω = 2π f / f s) gives the maximum output. Thus, 
each frequency has its own optimum resolution parameter which 
maximizes the relation (7). The resolution parameters Md and Ms

are optimally chosen to enhance respectively the sum and the 
difference frequencies. Approximate relations of the optimum lag 
parameters for ( f1 − f2), Md , and ( f1 + f2), Ms , are given by [17]

Md =
⌊

0.5 f s

f1 + f2
+ 0.5

⌋
; Ms =

⌊
i × f s

f1 + f2
+ 0.5

⌋
(8)

where �.� is the floor function and i ∈ N
∗ . Larger values of i pro-

duce greater signal enhancement, but can introduce longer delay 
[17]. We illustrate the interest of �dk [x(n)] operator using a signal 
of two closely spaced tones, x(t):

x(t) = sin(2π f1t) + sin(2π f2t) + n(t) (9)

where t ∈ [0, 1], n(t) is a white Gaussian noise of signal to noise 
ratio (SNR) of 26 dB, f1 = 435 Hz, f2 = 400 Hz and f s = 8 kHz. 
The parameter i is set to 2. Using relations (8) we get Md = 5 and 
Ms = 19 (Figs. 1(a)–(c)). To identify the frequency components at 
f1 − f2 = 35 Hz and f1 + f2 = 835 Hz, a frequency analysis of 
�dk [x(n)] and �d [x(n)] operators is performed by calculating their 
power spectral density (PSD). �dk [x(n)] operator is applied to x(t)
with k = 1 (classical TK operator), k = Md and k = Ms . Both �d
and �d5 operators reveal a strong frequency component at the dif-
ference frequency of 35 Hz, but not corresponding component at 
the summation frequency of 835 Hz. Note that the spectral peak 
at 35 Hz is more prominent in the case k = 5 compared to result 
provided by TK operator (k = 1). This result shows the interest to 
combine TK operator with a lag parameter k �= 1, even in the pres-
ence to noise, to enhance the difference frequency. The spectrum 
of �d19 shows a clear peak at 835 Hz and none at 35 Hz. The use 
of large value of the lag parameter accentuates the summation fre-
quency. This example confirms the findings reported in [17] and 
show that changing the lag parameter k can result in enhancing 
the summation or difference frequencies of two component tones. 
Furthermore, noise with SNR = 26 dB does not degrade the promi-
nence of the summation or the difference frequency component. To 
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