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We explore the shift variance of the decimated, convolutional Discrete Wavelet Transform, also known 
as Fast Wavelet Transform. We prove a novel theorem improving the FWT algorithm and implement a 
new prediction method suitable to the multiresolution analysis of streaming univariate datasets using 
compactly supported Daubechies Wavelets. An effective real value forecast is obtained synthesizing the 
one step ahead crystal and performing its inverse DWT, using an integrated group of estimating machines. 
We call Wa.R.P. (Wavelet transform Reduced Predictor) the new prediction method. A case study, testing 
a cryptocurrency exchange price series, shows that the proposed system can outperform the benchmark 
methods in terms of forecasting accuracy achieved. This result is confirmed by further tests performed 
on other time series. Developed in C++, Standard 2014 conformant, the code implementing the FWT 
and the novel Shift Variance Theorem is available to research purposes and to build efficient industrial 
applications.

© 2017 Published by Elsevier Inc.

1. Introduction

The problem of forecasting streaming datasets has been largely 
explored in the past, especially in the financial field; the main 
reason being the availability of large price time series, which are 
better suited to test any newly contrived predictor system. We also 
believe that such research field will become a core issue with the 
advancement of technologies such as the Internet of Things, giving 
the emerging need of forecasting the data generated by sensors 
and surveillance devices.

Recently, many researchers [42,32,23] are heading towards 
novel multiscale analysis approaches, motivated by recent findings 
about the powerful methods of wavelets, the latter being applied 
either alone, or in conjunction with other prediction models. Wang 
et al. [54] studied the possibility to improve the forecast of finan-
cial time series integrating a wavelet analysis denoising prepro-
cessing module, and back propagation neural networks to perform 
regression. Their results show that such approach is promising, 
and motivated us to develop an implementation of the wavelet de-
noising neural network (WDNN) in order to benchmark the herein 
proposed inference engine’s performance.

More recently, hybrid wavelet-based machine learning systems 
have been proposed. In Huang et al. [29] the wavelet analysis is 
combined with Support Vector Regression to forecast prices. The 

E-mail address: marco.stocchi@diee.unica.it (M. Stocchi).

authors report improvements in the precision of the results, com-
paring them with the outputs of other standard SVR methods. Fang 
et al. [21] propose a prediction system based on genetic algo-
rithms and wavelet neural networks, achieving a better accuracy 
than other benchmarking methods. A wavelet analysis is also used 
by Andrieş et al. [2] to investigate the behavior of exchange rates 
of several national currencies of eastern european countries.

Quite recently, many discrete wavelet transform (DWT algo-
rithms) where proposed; the majority of them are classified as un-
decimated, shift invariant transforms, hence they are immediately 
applicable to the analysis of streaming datasets. Examples are the 
Stationary DWT [45], the “à trous” [52,39], the Maximum Overlap 
DWT [24]. These methods are alternative to the decimated, convo-
lutional Discrete Wavelet Transform (also know as the Fast Wavelet 
Transform – FWT), which is implemented by iteratively filtering 
and downsampling a source series using two quadrature mirror 
filters. However, the FWT is known to be a non shift-invariant algo-
rithm. Such feature causes major difficulties when performing the 
DWT of shifting time series. In particular the lack of shift invari-
ancy, in signals processed using the FWT, impairs the possibility to 
compare directly two DWT crystals, calculated before and after a 
shift-insertion operation. Moreover, in order to extrapolate the nth 
step ahead of a time series, there must be full availability of the 
past data, hence the possibility to contrive a predictor based on the 
FWT analysis is difficult as well. It is then logical that the lack of 
any law describing the FWT coefficients transposition in the shift 
domain implies the need of endowing a forecasting system with 

https://doi.org/10.1016/j.dsp.2017.09.014
1051-2004/© 2017 Published by Elsevier Inc.

https://doi.org/10.1016/j.dsp.2017.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:marco.stocchi@diee.unica.it
https://doi.org/10.1016/j.dsp.2017.09.014


JID:YDSPR AID:2201 /FLA [m5G; v1.223; Prn:5/10/2017; 9:29] P.2 (1-8)

2 M. Stocchi, M. Marchesi / Digital Signal Processing ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

a large number of regressor machines (one for each DWT coeffi-
cient). Such redundant configuration would cause lengthy training 
operations and it would inevitably degrade the accuracy achiev-
able. It is our opinion that the challenge of shifting time series 
prediction, assisted by the wavelet analysis, would be better ap-
proached if the number of machines (deputed to perform real 
value forecasts) could be reduced to a minimum. Also, retaining 
the FWT algorithm, instead of adopting a shift invariant wavelet 
transform, would allow to implement a much more efficient and 
parsimonious system.

To this purpose, we explore the shift variance properties of the 
FWT of streaming input datasets, proving a novel Shift Variance 
Theorem – SVT. We integrate the SVT in the implementation of 
our predictor, greatly reducing the number of the required es-
timator machines. We name such predictor system a Wa.R.P. – 
Wavelet transform Reduced Predictor. Results show that the sug-
gested method can outperform the benchmark models when ap-
plied to the Bitcoin-US Dollar hourly exchange rates. In order to 
evaluate the degree of generalization of the predictor, we also test 
the Wa.R.P. using three currency exchange pair datasets and three 
statistical time series. The predictor confirms its accuracy when 
compared with artificial neural networks and support vector re-
gression.

The novel SVT is not only useful to devise highly efficient pre-
dictor systems, but it also allows to speed up the computation of 
the DWT of streaming univariate datasets. We studied the compu-
tational complexity of the reduced FWT, showing that an asymp-
totic reduction of 50% of the operations needed is achieved. We 
also tested a CPU implementation of the reduced FWT, observing 
an effective, significant improvement in computation time, propor-
tional to the size of the sample used.

The software, available for download from a public repository 
(see Appendix A), is currently used for research purposes; the 
projected pathway to achieve an industrial impact has been con-
sidered at the Agile Group of the Department of Mathematics and 
Computer Science of the University of Cagliari. As such, an efficient 
SaaS application, suitable to provide DWT calculation services, is 
presently under development. Our ambition is to endow it with 
the highest feasible number of external univariate data sources.

This paper is organized as follows: Sec. 2 provides a background 
of the discrete wavelet transform, introducing the notation used; it 
addresses the shift variance problem and proofs the associated the-
orem. It also proposes a framework suitable to employ regression 
machines, using the DWT crystals of a sampled series. Sec. 3 de-
scribes the case-study application (the Bitcoin – US Dollar hourly 
exchange rates prediction), benchmarking the results obtained by 
the Wa.R.P. engine with other forecasting systems. Sec. 4 reports 
the prediction results obtained using further sets of source time 
series. Sec. 5 addresses several aspects of the calibration of the 
system, useful to achieve improvements in the forecasting per-
formance. A final discussion and the conclusions are reported in 
Sec. 6.

2. Method

Let us denote f (t) : R+ → R a source signal, to be sampled 
at constant time intervals. At each new sampled data insertion, 
a multiresolution analysis (MRA) of a fixed size window of the 
sampled 1D series is performed, using the Fast Wavelet Transform 
algorithm; the resulting output, called crystal, is stored as a row 
entry of a matrix of appropriate size. The prediction system per-
forms a forecast of the one-step ahead crystal, using dedicated 
regressor machines. In the present work, the Wa.R.P. engine is en-
dowed with a group of multilayer perceptrons, each trained to 
perform the forecast of a single coefficient of the DWT. Eventu-

ally, the prediction of the input series is obtained by inverting the 
FWT of such estimated crystal.

In order to give a brief review of the discrete wavelet transform 
theory and, contextually, to establish notation, let us recall that the 
following families of functions hm,n(t), generated by shifting and 
scaling an appropriately chosen mother wavelet h:

hm,n(t) =
{

2−m/2 h(2−mt − n) : m,n ∈ Z

}
, (1)

constitute an orthonormal basis of the vector space of measurable 
square integrable 1D functions L2(R) [14]. They have been applied, 
in the past, to the analysis of signals pertaining to many scientific 
disciplines, and recently they were also applied to the study of 
financial time series. Their elements have good localization prop-
erties in both the spatial and Fourier domains. If the source time 
series is continuous, its DWT is defined as:

Tm,n( f ) = 〈
hm,n, f

〉 = 2−m/2
∫
R

f (t) h(2−mt − n) dt. (2)

Mallat [40] proved that the functions f (t) ∈ L2(R) can be con-
sidered as a limit of successive approximations (smoothed versions 
of f (t)), and that it is possible to find the wavelet coefficients Tm,n

as the difference of two approximations of f (t) at consecutive dif-
ferent scales. To obtain this, it is necessary to define two families 
of scaling and wavelet functions, φm0,n(t) and ψm,n(t), respectively, 
which enable to express f (t) by means of the following series:

f (t) =
∑

n

cm0,nφm0,n(t) +
∑

m

∑
n

dm,nψm,n(t). (3)

Eq. (3) is the key to signal reconstruction (also called inverse 
DWT – IDWT), whereas the forward DWT allows to retrieve the 
cm0,n and dm,n sets of coefficients. Moreover, a multiresolution de-
composition of a sampled series can be performed efficiently in 
a recursive way, by means of filtering and downsampling opera-
tions, hence the algorithm name of fast wavelet transform (FWT). 
Usually, these filters are denoted by h and g . Because of their prop-
erties, in signal analysis they are referred to as quadrature mirror 
filters. The interested reader can rely on the original description of 
the Multiresolution Analysis, introduced in Mallat [40]. A detailed 
review of the wavelet based decomposition and reconstruction al-
gorithms can be found in Daubechies [14].

Let us denote a source digital signal X of size nX , composed of 
the last consecutive sampled values of f (t):

X = {
xnX −1, ..., x1, x0

}
. (4)

In eq. (4) the x0 element is a newly inserted source element. 
The size nX is kept constant by popping (removing) the first and 
older element from vector X (first in last out). Let us also denote 
nh the size of both h and g filters, m the recursion depth of the 
procedure, 2−m being the resolution Rm to which the signal is an-
alyzed at depth m. If m = 0 (R0 = 20 = 1), the input series is of 
course the source series itself. The forward FWT starts by con-
volving the source series with both filters h and g , and retaining 
(separately) one sample out of two. This allows to obtain, respec-
tively, two sets of coefficients, herein denoted by c1 and d1, of the 
next level m =1 (lower resolution R1 =2−1), respectively repre-
senting a smoothed version of X and the difference of information 
between the two adjacent series c0 � X and c1. The resulting vec-
tor of c1 coefficients is used as input to the operation of the next 
level m =2, and the process can be repeated up to the maximum 
depth M . The last set of coefficients cM is retained. The maximum 
depth M depends on both nX and nh:

M = log2 nX − �log2 nh�. (5)
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