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The Short-Time Fourier Transform (STFT) is widely used to convert signals from the time domain into a 
time–frequency representation. This representation has well-known limitations regarding time–frequency 
resolution. In this paper we use the basic concept of the Short-Time Fourier Transform, but fix the 
window size in the frequency domain instead of in the time domain. This approach is simpler than 
similar existing methods, such as adaptive STFT and multi-resolution STFT, and in particular it requires 
neither the band-pass filter banks of multi-resolution techniques, nor the evaluation of local signal 
characteristics of adaptive techniques. Three case studies are analyzed and the results show that the 
proposed method allows better identification of signal components compared to standard STFT, multi-
resolution STFT and Adaptive Optimal-Kernel Time Frequency Representation, although the method is 
not computationally efficient in its present form. Some synthetic and real world signals are used to 
demonstrate the effectiveness of the proposed technique.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Fourier Transform (FT), as well as its discrete signal versions 
converts a signal from the time domain into the frequency domain 
[1,2]. For signals whose frequency content changes over time it 
is even more appropriate to analyze them in the time–frequency 
domain, although this may introduce some additional redundant 
information. A fundamental property of time–frequency represen-
tations (TFR) is related to the manner in which they depend upon 
the signal [3]. This dependency may be linear, quadratic or non-
linear. All linear TFRs, such as the Short-Time Fourier Transform 
(STFT) and wavelets, satisfy the superposition or linearity principle. 
The STFT has been widely used for processing signals, for exam-
ple in image processing [4], speech [5], engineering [6,7], biology 
and medicine [8]. The STFT adds a time dimension by segment-
ing a non stationary signal into many frames that should contain 
quasi-stationary parts, and uses a window function to reduce the 
side lobes in the spectra. However, this transform has the draw-
back of having a fixed window size. On one hand, long windows 
provide better frequency resolution but poor time resolution. On 
the other hand, short windows are appropriate for better time 
resolution but not for lower frequency resolution [9]. The prop-
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erties of standard STFT have been extensively studied, including 
inversion of the transform to reconstruct the original signal, as 
well as shift invariance and rotation invariance properties [10–12]. 
The reassignment method can be used to improve the readabil-
ity of time–frequency and time-scale representations [13,14]. This 
method creates a modified version of the representation, by mov-
ing the time–frequency points away from the location where they 
are computed to a more appropriate one. Synchrosqueezing is a 
special case of reassignment with the additional advantage of al-
lowing for reconstruction [15,16]. It can also be used to analyze 
the dynamics of the periodicity of a given signal, such as time-
varying frequency and amplitude [17]. However, synchrosqueezing 
does not change the qualitative behavior of the TFR and does not 
increase the time or frequency resolution of the transform, improv-
ing only the readability of the TFR [18].

Besides, many alternatives to the standard STFT have been pro-
posed [19–24], including interference removal [25]. Also currently 
under study is the idea of improving the resolution of STFT by 
combining STFTs of different window lengths [22]. Multi-resolution 
is a method whereby the signal is divided into frequency bands 
and each band is processed with a different window size [26,27]. 
However, a band-pass filter has to be applied to separate the bands 
where different window sizes are used. In order to address the 
problems of the fixed window size of STFT, adaptive techniques 
(ASTFT) propose an adjustment of the window size depending on 
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local signal characteristics [28,29]. However, they usually suffer 
heavy computational complexity [30]. Adaptive STFT techniques 
propose, for example, using a large window when the derivative 
of the instantaneous frequency varies smoothly and a narrow win-
dow when it varies sharply [29]. Unlike these techniques, which 
use different window sizes for different time instants, we propose 
the use of different window sizes for different frequencies. Our ap-
proach would be closer to multi-resolution techniques [27], insofar 
as it uses different window sizes for different frequencies. How-
ever, unlike multi-resolution, our approach does not require the 
use of band-pass filter banks and is not limited to a reduced num-
ber of window sizes.

In this paper, the basic concept of STFT is maintained; how-
ever, the window size is fixed in the frequency domain (STFT-FD) 
rather than in the time domain. Our objective is the same as 
that of multi-resolution; using small windows for high frequen-
cies and large windows for low frequencies. Longer windows on 
low frequencies, allow getting better frequency resolution [27]. At 
the higher frequencies, lower frequency resolution is required, and 
smaller windows allow having more accurate time resolution to 
correctly detect transients. The key element for achieving this ob-
jective with the proposed approach is to define the window size 
as a fixed number of cycles of each frequency, rather than a fixed 
time length. With this approach, the window size is not adjusted 
depending on the local signal characteristics, as in ASTFT. How-
ever, as the window size is frequency dependent, it is possible to 
address the well-known problems of the STFT without increasing 
the required computation time excessively. With the selection of a 
window in the frequency domain, band-pass filter banks are not 
required.

The Continuous Wavelet Transform, which is based on wavelet 
analysis, can be considered another TFR which can be used as an 
alternative to STFT [31]. Wavelets rely on the use of a mother 
wavelet function which can be scaled and shifted in order to cor-
relate with the anomalies or events of the signals. In this sense, 
the proposed approach has similarities with wavelets but its core 
methodology is different. The S transform is an extension of the 
ideas of the Continuous Wavelet Transform that overcomes the 
STFT by using a moving and scalable localizing Gaussian win-
dow [32]. Similarly to the S transform, our approach also provides 
frequency-dependent resolution and has a direct relationship with 
the Fourier spectrum. Other authors propose combining several 
techniques [33]. STFT, wavelets, time–frequency varying autore-
gressive process and kernel estimators are all part of the method-
ological approach in [34]. In order to better understand algorithmic 
and performance differences with wavelets, results are compared 
to the Morlet wavelet transform in the complementary parallel pa-
per in SoftwareX [35].

On the other hand, in this paper, the results of our proposed 
approach are contrasted with standard STFT, with multi-resolution 
STFT [24] and with an Adaptive Optimal-Kernel Time Frequency 
Representation (AOK-TFR) [36], which can be classified as a signal-
dependent time–frequency representation, whose kernel changes 
over time to be able to match the local signal characteristics. 
Section 2 describes the methodology and presents a formulation. 
Section 3 proposes two case studies, the results of which are 
shown in Section 4. Finally, Section 5 summarizes the main con-
clusions.

2. Methodology

We consider a time-constrained discrete signal x(t), where t is 
a discrete index representing time or space and NS is the number 
of coefficients, which corresponds to the number of samples in the 
case of a sampled signal.

Fig. 1. Representation of a frequency component with p = 8 samples/cycle, NC = 4
cycles, NW( f ) = 32 samples. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

We consider the following window.

w(n), n ∈ {
1, . . . ,NW( f )

}
(1)

We have defined the window with a time index n, which starts 
at 1; it also has a parameter NW( f ) which is the number of sam-
ples of the window.

If the sampling interval is Ts, then the frequency corresponding 
to a given number of samples per cycle (p) is:

f = 1

p · Ts
(2)

In this paper we set the window size as frequency dependent. In 
particular, we define NC as the number of periods or cycles within 
the window function. The following equation determines the win-
dow size (in number of samples) for each frequency.

NW( f ) = p · NC = NC

f · Ts
(3)

Window size will depend on frequency. For example, if NC is set 
to 4, for a frequency of f = 50 Hz, and period T = 20 ms, the win-
dow size will be 4 cycles (80 ms). For a frequency of f = 100 Hz, 
T = 10 ms, the window size will be 4 cycles (40 ms). The param-
eter NC determines how locally we consider the STFT-FD. Low NC
will mean that we compute just a few cycles of every frequency 
component. High NC values mean that we consider many cycles to 
compute the transform. In this way, with the proposed approach 
we can simultaneously adapt the representation to several frequen-
cies. Khan et al. indicate that an ideal window would be one that 
gives maximum normalized energy [22]. The problem is then find-
ing the optimal window size. However, this falls outside the scope 
of the present paper.

As a non-square window is also applied to the signal, it is not 
recommended to use a value of NC = 1. In our case studies, we 
have selected a value of NC of 4 or 8 in order to have at least a 
couple of cycles before the window function softens the transform.

Let X(t, f ) be the STFT-FD transform of the discrete signal x(t). 
For a given instant t and frequency f , the number of samples to 
consider will be dependent on frequency. The number of samples 
of the window will be NC times the number of samples per cycle 
(p) of each frequency component.

Several types of windows can be used, as in traditional STFT. 
In our case we have used the N-point symmetric Hamming win-
dow. Fig. 1 shows an example of a frequency component (in black) 
with p = 8 samples/cycle; considering NC = 4 cycles. The window 
function and their product are also represented in blue and red 
respectively. The size is NW( f ) = 32 samples.

The product of the sinusoid and the Hamming function (repre-
sented in red) would be similar to the mother wavelet concept in 
wavelets, and scaled with the p parameter for different frequen-
cies, similarly to wavelets which are also scaled. In the same way 



Download English Version:

https://daneshyari.com/en/article/6951758

Download Persian Version:

https://daneshyari.com/article/6951758

Daneshyari.com

https://daneshyari.com/en/article/6951758
https://daneshyari.com/article/6951758
https://daneshyari.com

