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Compressive sensing is a framework for acquiring sparse signals at sub-Nyquist rates. Once compressively 
acquired, many signals need to be processed using advanced techniques such as time–frequency 
representations. Hence, we overview recent advances dealing with time–frequency processing of sparse 
signals acquired using compressive sensing approaches. The paper is geared towards signal processing 
practitioners and we emphasize practical aspects of these algorithms. First, we briefly review the idea of 
compressive sensing. Second, we review two major approaches for compressive sensing in the time–
frequency domain. Thirdly, compressive sensing based time–frequency representations are reviewed 
followed by descriptions of compressive sensing approaches based on the polynomial Fourier transform 
and the short-time Fourier transform. Lastly, we provide brief conclusions along with several future 
directions for this field.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Time–frequency analysis provides a framework for a descriptive 
analysis of non-stationary signals whose models are not available 
or easily constructed [1], [2]. For such signals, time or frequency 
domain descriptions typically do not offer comprehensive details 
about changes in signal characteristics [3]. The main issue with 
the time domain representation is that it provides no details about 
the frequency content of those signals, and sometimes, even the 
time content can be difficult to interpret [4]. The frequency do-
main on the other hand provides no easily understood timing de-
tails about the occurrence of various frequency components [5]. In 
other words, timing details are buried within the phase spectrum 
of a signal, which is the most common reason for only analyz-
ing the amplitude spectrum of a signal obtained via the Fourier 
transform. To combine timing and spectral into a joint represen-
tation, a time variable is typically introduced into a Fourier-based 
analysis to obtain two-dimensional, redundant representations of 
non-stationary signals [6]. Such representation provide a descrip-
tion of spectral signal changes as a function of time, that is, the 
description of time-varying energy concentration changes along 
the frequency axis. In an ideal case, these two-dimensional signal 
representations would combine instantaneous frequency spectrum 
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with global temporal behavior of a signal [7], [8], [9], [10], [11], 
[12], [13], [14], [15].

Time–frequency analysis is often employed in the analysis of 
complex non-stationary signals (e.g., physiological signals [16], 
[17], [18], [19], [20], [21], [22], [23], mechanical vibrations [24], 
[25], [26], [27], audio signals [28], [29], [30], radar signals [31], 
[32], [33], [34], [35], [36]). However, continuously monitoring such 
signals for an extended period of time can impose heavy burdens 
on data acquisition and processing systems, even when sampling 
these non-stationary signals at low sampling rates. To avoid these 
data acquisition and processing burdens, compressive sensing aims 
to compress signals during a data acquisition process, rather than 
afterwards [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], 
[47], [48], [49], [50], [51], [52].

In this paper, we review recent advances that combine the ideas 
of time–frequency and compressive sensing analyses. Section 2 re-
views the main ideas behind compressive sensing. In Section 3, 
we introduce the main approaches to obtain compressed sam-
ples in the time–frequency domain. Several different approaches 
are presented here including compressive sensing in the ambigu-
ity domain, but also compressive sensing of non-stationary signals 
using time–frequency dictionaries. We also reviewed compressive 
sensing approaches that relied on the short-time Fourier transform 
and the polynomial Fourier transform. Compressive sensing based 
time–frequency representations are described in Section 4. Conclu-
sions and future directions are provided in Section 5.
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2. Compressive sensing

In traditional signal processing, the Shannon–Nyquist sampling 
theorem mandates that any signal needs to be sampled at least 
twice the highest frequency present in the signal to be able to ac-
curately recover information present in the signal. The traditional 
sampling approach can yield a large number of samples, and com-
pressive strategies are often used immediately after sampling in 
order to reduce storage requirements or transmission complexi-
ties. While this has been a prevailing approach for many years, 
it is clearly a redundant approach as most of acquired samples are 
disregarded immediately after sampling. To avoid these redundant 
steps, compressive sensing has been proposed and it postulates a 
signal can be recovered using a fewer number of samples than re-
quired by the Shannon–Nyquist theorem [38], [39], [53], [40], [54]
[55], [56], [57], [58], [59], [60], [61], [62], [63].

The main idea behind compressive sensing is to combine sens-
ing and compression steps into a single step during a data ac-
quisition process [39], [40], [42], [64], [65]. Compressive sensing 
approaches typically acquire signals at sub-Nyquist rates (e.g., one 
tenth of the Nyquist rate) and signals can be accurately recov-
ered from these samples with a certain probability [39]. These ap-
proaches work very well for K -sparse signals, i.e., signals that can 
be represented by K bases in an N-dimensional space. In other 
words, compressive sensing approaches will acquire M � N sam-
ples that will encode a K -sparse signal of dimension N by com-
puting a measurement vector y of a signal vector s [66], [67], [68], 
[69]:

y = �s (1)

where � represents an M × N sensing matrix [40]. The signal vec-
tor s can be recovered from sparse samples by utilizing a norm 
minimization approach:

min ||s||0 subject to ‖y − �s‖2 < ξ (2)

where ξ is measurement noise, ||s||0 represents the number of 
nonzero entries of s and ‖•‖2 is the Euclidean norm. However, 
it should be mentioned that it is not guaranteed that eqns. (1)
and (2) will provide an accurate representation of sparse signals. 
In some applications that are sensitive to small changes such as 
medical diagnostic applications, it is almost mandatory to achieve 
almost perfect recovery of these sparse signals, otherwise com-
pressive sensing schemes are not useful at all in medical diag-
nostic applications. To reach these almost perfect reconstructions 
of sparse signals, compressive sensing can be performed in other 
domains (i.e., other than the time domain), which yields a new re-
formulation of the compressive sensing approach proposed in (1)
as [64], [67]:

y = �s = ��x. (3)

Here, x is the vector of expansion coefficients representing the 
sparse representation of the signal s in the basis � . A very good 
example of this change is representing a single sinusoid in the fre-
quency domain. This transformation would enable us to represent 
such a sinusoid with by a two-sparse vector. In this paper, this 
change of the domain is achieved by representing a signal in the 
time–frequency domain, rather than using its time-domain sam-
ples.

It should be understood that the compressive sensing approach 
proposed by eqn. (3) affects the sparsity in the transform do-
main, which then inherently affects the number of measurements 
needed to reconstruct a signal. This is assessed using the so-called 
coherence measure between the matrices � and � [70], [71], [72], 
[73]:

μ(�,�) = √
N max |〈φk,ψ j〉| (4)

where N is the signal length, φk is the kth row of �, and ψ j is the 
jth row of � . Smaller values of the coherence measure typically 
denote that a smaller number of random measurements is needed 
to accurately reconstruct a signal.

3. Time–frequency based compressive sensing

The time–frequency domain represent an ideal domain to 
sparsely represent nonstationary signals for several different rea-
sons. First, it is very difficult to represent nonstationary signals 
sparsely either in time or frequency domains. For example, a fre-
quency modulated signal is concentrated along its instantaneous 
frequency in the time–frequency domain, and most of other val-
ues are equal to zero. But, its frequency domain representation 
has many non-zero components, and its time domain represen-
tation typically has many (large) amplitude changes that can be 
difficult to compress. Therefore, such a frequency modulated sig-
nal or any other signal with complex non-stationary structures 
should be compressively sampled in the time–frequency domain, 
as their representations are often sparse in the time–frequency 
domain [74], [75], [76]. Second, recent advances in computational 
resources enabled fast manipulations of large matrices, which are 
required for compressive sensing of nonstationary signals in the 
time–frequency domain [77].

In this section, we will overview two major approaches for 
compressive sensing of nonstationary signals in the time–frequency 
domain. We will begin with compressively sampling a nonsta-
tionary signal in the ambiguity domain as proposed in [78] with 
understanding that this approach is only applicable for quadratic 
time–frequency representations. A more general approach is to uti-
lize time–frequency dictionaries to obtain a sparse time–frequency 
representation of a nonstationary signal, which can be then used 
to compressively sensed such a signal.

3.1. Compressive sensing in the ambiguity domain

As mentioned in the previous paragraph, the ambiguity domain 
provides a suitable framework to compressively sampled non-
stationary signals. To achieve representations in the ambiguity do-
main, we can start with the Wigner–Ville distribution, W V D(t, f ), 
and take the two-dimensional Fourier transform of it to obtain the 
ambiguity domain representation [1], [79]:

Ax(ν, τ ) = F2D{W V D(t, f )} (5)

where F2D is the forward and inverse two-dimensional Fourier op-
erator. The ambiguity domain offers an opportunity to suppress or 
completely remove cross-terms, which plague the quadratic time–
frequency representations, as cross-terms are typically displaced 
from the origin in the ambiguity domain, and the auto-terms are 
typically centered around the origin. Therefore, low-pass filtering 
by multiplying the ambiguity representation of the signal, Ax(ν, τ ), 
by a kernel function k(ν, τ ):

Ax(ν, τ ) = Ax(ν, τ )k(ν, τ ). (6)

However, it should be mentioned here that compressive sens-
ing approaches here are mostly used to obtain enhanced time–
frequency signal energy localization in the time–frequency domain. 
Specifically, we compressively sample the ambiguity domain rep-
resentation of the signal in order to obtain a very sparse time–
frequency domain signal representation. This is achieved by solv-
ing the l1-norm minimization problem to obtain a sparse time–
frequency distribution ϒ̂x(t, f ):
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