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Stochastic modeling commonly requires random process generation with an exponential autocorrelation 
function (ACF). These random processes may be represented as a solution of a stochastic differential 
equation (SDE) of the first order and usually have one-sided (positive-axis-defined) distributions. 
However, adoption of the SDE-based method faces serious limitations due to difficulties with the 
numerical solution. To overcome this issue we propose a tractable general numerical solution of the 
above-mentioned SDE that preserves solution positivity and accuracy, and validate it with numerical 
simulations.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The exponential, or approximately exponential, ACF is amongst 
the common known signals of natural origin that is also analyt-
ically tractable. Hence, the proposed method will be useful in a 
plethora of fields and applications, including modeling radio and 
optical wave propagation [1–6], radar [7,8], biology [9], speech pro-
cessing [10] and more.

Through the years, significant effort has been devoted to the 
generation of non-Gaussian sequences with an arbitrary probability 
density function (PDF) and ACF, e.g. [11–14]. While providing use-
ful results, these methods have either limited accuracy, or analyt-
ical complexity, or an excessive number of parameters, or limited 
generated process length. One of the efficient methods for the gen-
eration of a process with an arbitrary PDF and an exponential ACF 
was proposed by Primak et al. [15,16]. The method is based on the 
solution of properly constructed stationary stochastic differential 
equations (SDEs) that is derived from a corresponding steady-state 
Fokker–Planck equation [17–19].

Propagation modeling typically requires the generation of a 
positive-axis-defined distribution, e.g. Rayleigh, log-normal, Nak-
agami, Gamma, etc. [20,21]. In principle, a SDE-based method may 
be effective for the generation of such distributions. However, a 
non-trivial numerical scheme needs to be applied for solving such 
SDEs. Moreover, some of these distributions have a discontinuity 
at the origin, i.e. half-normal distribution and exponential distribu-
tion, and, hence, the numerical solution of such SDEs is even more 
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challenging. While preliminary theoretical analysis can be found 
in [22] and numerical analysis for some special cases can be found 
in [23], a general and effective numerical solution is still sought.

The numerical solution of a SDE that preserves its positivity is 
of significant interest at present, due to its importance in math-
ematical finance theory. In this context, a particular case of the 
Gamma distribution was rigorously analyzed in [24,25]. Moreover, 
it was recently shown that such a solution is particularly useful 
for a special case of SDE, related to the Gamma distribution with 
an exponential ACF [26]. In this particular case, a numerical so-
lution that preserves positivity was sought by the application of 
implicit numerical methods. In this paper, we generalize our pre-
vious single-distribution results [26] and apply them to the general 
class of above-mentioned SDEs that are useful for the genera-
tion of positive-axis-defined distributions with exponential ACFs. 
The main contribution of the paper is demonstrating the matching 
between the theoretical derivation outlined in [15,18] and the nu-
merical integration scheme, whose efficacy is supported herein by 
numerical examples and statistical validation. In addition, the sup-
plementary Mathematica code is published for the reader’s conve-
nience [27].

2. Theory

2.1. Synthesis of SDE

We start with the essential SDE theory. SDEs are the natural 
extension of ordinary differential equations with the addition of a 
white noise term, of the form

ẋ = f (x) + g(x)ξ(t), t � 0 (1)
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with some initial condition x(t0) = x0, where ξ(t) is a normal un-
correlated white Gaussian noise (WGN) process and f (x) and g(x)
are time-independent deterministic functions. The time notation 
was omitted for brevity, x = x(t).

The SDE solution, x(t), which is actually a random process, may 
be used to model various random phenomena by appropriate se-
lection of functions f (x) and g(x). For the special case, when 
the desired solution of (1) is an ergodic and wide-sense station-
ary (WSS) process with an arbitrary distribution, px(x), and with 
an exponential ACF, Cxx (τ ), functions f (x) and g(x) are given by 
[18,28]

f (x) = −λ(x − mx) (2a)

g2(x) = − 2λ

px(x)

x∫
0

(s − mx) px(s)ds, (2b)

where px(x) is the desired positive-axis-defined PDF of the form

px(x) =
{

px(x) x � 0

0 x < 0
, (3)

mx is the average of px(x) and the exponential ACF function is of 
the form

Cxx(τ ) = σ 2
x exp (−λ |τ |) , (4)

where σ 2
x is the variance of px(x). The substitution of (2a) into (1)

results in the considered (Itô form) SDE of the form

ẋ = −λ (x − mx) + g(x)ξ(t). (5)

2.2. Numerical solution

The theoretical solution of the SDE is a continuous-time ran-
dom process. However, when the numerical result is of interest, 
a discrete-time approximation solution has to be applied. As al-
ready mentioned above, the numerical solution has to deal with 
discontinuity at the origin. In order to preserve numerical stabil-
ity, the required solution scheme has to be an implicit (backward) 
one involving both the current process value xk and the next value 
xk+1, where indices k and k + 1 are related to the values at times 
tk and tk+1, respectively, such that �t = tk+1 − tk is the process 
sampling time.

The solution requires a numerical evaluation of the stochastic 
integral equation (integral form of (1)) of the form

x(t) = x(0) +
t∫

0

f (x(s))ds +
t∫

0

g(x(s))dξ(s). (6)

The important criterion of the solution method is convergence. 
The strong order of convergence is equal to γ if there exists a 
constant C such that

E [xn − x(n�t)] � C�tγ , (7)

when �t is sufficiently small. The common orders (values of γ ) are 
0.5, 1 and 1.5. The following numerical examples were evaluated 
with an implicit (backward) Milstein scheme having order 1; solu-
tions for schemes with orders 0.5 and 1.5 will be discussed later. 
The general scheme is based on a second-order Taylor approxima-
tion of (1) and may be described by a discrete-time differential 
equation of the form [29, Ch. 12, Eq. (2.9)]

xk+1 = xk + f (xk+1)�t + g(xk)
√

�tξk

+ 1

2
g(xk)g′(xk)�t

(
ξ2

k − 1
)

, (8)

Fig. 1. Samples of the χ2 distribution with exponential ACF.

where ξk are samples of the WGN process. When the numerical so-
lution is applied on (5), the substitution results in a discrete-time 
differential equation of the form

xk+1 = 1

1 + λ�t

[
xk + λmx�t

+ g(xk)
√

�tξk + 1

2
g(xk)g′(xk)�t(ξ2

k − 1)

]
. (9)

3. Numerical examples

3.1. χ2 distribution

The χ2 distribution is defined by

px(x;ν) = x(ν/2−1)e−x/2

2ν/2

(
ν
2

) , x > 0, (10)

where 
(x) is the Gamma function with a mean mx = ν . The re-
sulting g2(x) function that is required for the numerical solution 
of (9) is given by

g2(xk) = 4xkλ. (11)

The simulation results were evaluated for ν = 3, λ = 50 [1/sec], 
�t = 10−4 [sec] and kmax = 5 ×106 steps. The resulting (truncated) 
samples are presented in Fig. 1 and the resulting PDF and ACF are 
presented in Figs. 2 and 3. These results show a significant resem-
blance between the theory and the simulation.

In order to validate the statistical relation between the gener-
ated process and the given analytical distribution, the Cramér–von 
Mises, Anderson–Darling, Kolmogorov–Smirnov, Kuiper, Pearson χ2

and Watson U 2 tests were applied. Since the modification of these 
tests for correlated data is non-trivial [30], it was applied on sam-
ples with 1/λ�t spacing and revealed that the null hypothesis was 
not rejected at a remarkably low 0.1% level.

3.2. Half-normal distribution

The PDF of a half-normal distribution is given by

px(x; θ) = 2θ

π
exp

(
− x2θ2

π

)
, x > 0 (12)

with the mean value of mx = 1/θ . The resulting g2(x) function that 
is required for the numerical solution (9) is given by

g2(xk) == λπ

θ2

[
1 − exp

(
x2

kθ2

π

)
erfc

(
xkθ√
π

)]
, (13)

where erfc(x) is the standard complementary error function. This 
distribution is of special interest due to its discontinuity at the 
origin.
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