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This paper provides exponential stability results for two system classes. The first class includes a family of
nonlinear ODE systems while the second consists of semi-linear parabolic PDEs. A common feature of both
classes is that the systems they include involve sampled-data states and a time-varying gain. Sufficient
conditions ensuring global exponential stability are established in terms of Linear Matrix Inequalities
(LMIs) derived on the basis of Lyapunov-Krasovskii functionals. The established stability results prove to

be useful in designing exponentially convergent observers based on sampled-data measurements. It is
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shown throughout simulated examples from the literature that the introduction of time-varying gains is
beneficial to the enlargement of sampling intervals while preserving the stability of the system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Designing sampled-data observers and controllers has been a
hot topic in recent years, see e.g. Fridman (2010) and reference list
therein. In this regard, a long standing issue is how to enlarge the
sampling intervals (Heemels, Johansson, & Tabuada, 2012) while
ensuring global exponential stability. In a recent paper (Cacace,
Germani, & Manes, 2014), it has been shown that the introduction
of time-varying gains in a specific class of observers improves their
exponential convergence properties in presence of measurement
delay. Presently, these properties are investigated in presence of
measurement sampling. To this end, we consider two classes of
sampled-data systems and analyze their exponential stability. The
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considered classes are respectively consisting of nonlinear globally
Lipschitz ODEs and semi-linear parabolic PDEs. A common feature
of both classes is that the systems they include are allowed to in-
volve a time-varying gain of the form e7¢~% with > 0 a tuning
parameter, where t; (k = 0, 1, ...) are sampling instants. It turns
out that, the first family, including ODE systems, is a generalization
of that dealt with in Cacace et al. (2014). For both classes of systems,
we establish sufficient conditions for global exponential stability
in terms of Linear Matrix Inequalities (LMIs) derived from Lya-
punov-Krasovskii functionals. Then, it is shown that these stability
results are useful in designing sampled-data observers with time-
varying gains. As the established LMIs conditions involve both the
tuning parameter n and the maximum sampling interval h, these
parameters can then be used to improve the observer convergence
properties. Actually, it is checked through several simulated ex-
amples that the utilization of the above time-varying gain entails
significant enlargement of the maximum sampling interval, com-
pared with the constant gain case (corresponding to n = 0). It
is worth noting that, the present theoretical stability results can
also be used in sampled-data control design improving exponen-
tial stability properties and enlarging sampling intervals. A part of
the present results, namely those concerning ODEs, have been pre-
sented in our conference paper (Ahmed-Ali et al., 2015).
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The paper is organized as follows: in Section 2, the first
stability result, concerning nonlinear ODE systems, is stated and
applied to observer design; in Section 3, the second stability
result, concerning semi-linear PDE systems, is stated and applied
to observer design; a conclusion and reference list end the paper.
Some technical proofs are appended.

Notations and preliminaries

Throughout the paper the superscript T stands for matrix
transposition, R" denotes the n-dimensional Euclidean space with
vector norm |.|, R"™*™ is the set of all n x m real matrices, and
the notation P > 0, for P € R™", means that P is symmetric
and positive definite. In Symmetric matrices, symmetric terms
are denoted *; Amin(P) (resp. Amax(P)) denotes the smallest
(resp. largest) eigenvalue. The notation (t)i>o refers to a strictly
increasing sequence such that tp = 0 and limy_. ty = o0. The
sampling periods are bounded i.e. 0 < ty,1 — ty < h for some
scalar0 < h < oc0oandallk = 0,1, ..., 0o. We also define the
variable T(t) =t — ty, t € [ty, ty1). H1(0, ) is the Sobolev space
of absolutely continuous functions z : (0, ) — R with the square
integrable derivative dix Given a two-argument function u(x, t), its

. . . P 2
partial derivatives are denoted u; = 3—? Uy = %

2. Sampled-data globally Lipschitz nonlinear ODEs

2.1. System description and stability result

We are considering a class of sampled-data nonlinear systems
described by the following equation:
X(t) = Ax(t) + Are” " x(t) + p(x(1)), ¢ € [tk tiyr) (1)

where x(t) € R"; the scalar n > 0; Ag, A1 are constant matrices
with appropriate dimensions. As in Bar Am and Fridman (2014),
the function ¢ is supposed to be class @! with uniformly bounded
Jacobian ¢,, satisfying ¢(0) = 0 and

b ()Pu(x) <M Vx (2)

for some positive constant n x n-matrix M. Using Jensen’s
inequality it is readily checked that (2) implies the following
inequality:

1 1
f by (sx)ds / ¢ (sx)ds < M.
0 0

Remark 1. Eq. (1) may represent a networked control system
described by

x(t) = Aox(t) + ¢(x(t)) + Bu(t),

with the communication network placed between the sensor and
the controller (but no network is placed between the controller and
the actuator). Assuming that the discrete-time state measurements
x(ty) are transmitted through the communication network from
the sensor to controller, consider the state-feedback,

u(t) = e "TWKx(t), ¢ € [t, tirr),

where K isagainand n > 0is ascalar. It turns out that the resulting
closed-loop system fits Eq. (1) with A; = BK.

As in Cacace et al. (2014), introduce the following change of
coordinates z(t) = e"'x(t) with n > 0. Then one gets

z(t) = nz(t) + Aoz(t) + Arz(te)

1
+ [f ¢x(SX(f))dS] e"x(t), t € [ty tis1) (3)
0

which is rewritten as follows:
z(t) = (nly + Ag) z(t) + A1z(tr)
1
+ [ | @(sx(t))ds] 2(0), €€ [t ). (4)
0

Following Fridman (2010), consider the following Lyapunov-
Krasovskii functional for (4):

V(t) = V(t) + Vx(b) (5)
with
t
szfmwm+mﬁ—0/?®W®m
tx

P>0,U>0,te[t, tit1)

and
X+ X7
z —X+X
Vi () = (tey1 — DET £,
;o X+XT
ES —X1 _Xl + 2

where £(t) = col{z(t), z(tx)}, X and X; are n x n matrices. The
positiveness of (5) is ensured if the following LMI holds (Fridman,
2010):

X+ X7

P+h hX; — hX

X4 XT > 0. (6)
* —hX; —hX] +h

Using the definition of z(t), we can see that the exponential
stability of system (1) is guaranteed if:

V() +2aV(t) <0 t € [t, tir1) (7)

for some scalar ¢ € (—n, 0] (note that the scalar « is allowed to be
negative). Indeed, if (7) is satisfied one has,

V V|t=0 efat
hY )Lmin(P) .

Then, using the fact that z(t) = e"x(t), one gets:

x(0)] < (Vrv'f‘(;’))) sy

From the above inequality, one sees that the exponential conver-
gence is guaranteed if n + « > 0. Since the parameter 7 is positive
and free, it is sufficient to let« € (—n, 0] for ensuring an exponen-
tial convergence with a decay rate n + «. In the following propo-
sition, it is shown that the property (7), and resulting exponential
stability with a decay rate n + o > 0, are actually ensured under
well established sufficient conditions, expressed in terms of LMIs.

V() < —2aV(t) = |z(1)| < (

Proposition 1. Consider the system (1) with possibly varying
sampling-intervals subject to ty,1 — ty < h with some scalar h > 0.
Givenn > 0and o € (—n,0], let there exist n x n matrices
P>0,U>0,X,Xq, Py, P3, T, Y, Y,andascalar A > O that satisfy
the LMI (6) and the following LMISs:

P11 — Xy P+ Xy P13+ Xia P;
W (0) 2 * @y +hU @y —Xizy P
% * @33 — XZO( 0
* * * —Al, (6)=0
<0 (8)
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